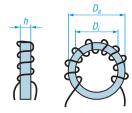
FUNKAMATEUR - Bauelementeinformation

Eisenpulver-Ringkerne von Amidon


T-Ringkerne

Kernabn	nessungen					
Kern-	D_{a}	D_{i}	h	$D_{\rm a}$	$D_{\rm i}$	h
größe	[mm]	[mm]	[mm]	[Zoll]	[Zoll]	[Zoll]
T-12	3,2	1,6	1,3	0,125	0,062	0,050
T-16	4,1	2,0	1,5	0,160	0,078	0,060
T-20	5,1	2,2	1,8	0,200	0,088	0,070
T-25	6,5	3,0	2,4	0,255	0,120	0,096
T-30	7,8	3,8	3,3	0,307	0,151	0,128
T-37	9,5	5,2	3,3	0,375	0,205	0,128
T-44	11,2	5,8	4,0	0,440	0,229	0,159
T-50	12,7	7,7	4,8	0,500	0,303	0,190
T-68	17,5	9,4	4,8	0,690	0,370	0,190
T-80	20,2	12,6	6,4	0,795	0,496	0,252
T-94	23,9	14,2	7,9	0,942	0,560	0,312
T-106	26,9	14,5	11,1	1,060	0,570	0,437
T-130	33,0	19,8	11,1	1,300	0,780	0,437
T-157	39,9	24,1	14,2	1,570	0,950	0,570
T-184	46,7	24,1	18,0	1,840	0,950	0,710
T-200	50,8	31,8	14,0	2,000	1,250	0,550
T-200A	50,8	31,8	25,4	2,000	1,250	1,000
T-225	57,2	35,7	14,0	2,250	1,405	0,551
T-225A	57,2	35,7	25,4	2,250	1,402	1,000
T-300	77,2	49,0	12,7	3,040	1,930	0,500
T-300A	77,2	49,0	25,4	3,040	1,930	1,000
T-400	101,6	57,2	16,5	4,000	2,250	0,650
T-400A	101,6	57,2	33,0	4,000	2,250	1,300
T-520	132,8	78,2	20,3	5,200	3,080	0,800

Bauteilbezeichnung

- Beispiel: T-37-10
- T → Abkürzung für Ringkern (engl.: Toroid)
- 37 → Kerngröße ist der Außendurchmesser in Vielfachen von 0,01 Zoll, dem gegebenenfalls ein Zusatzbuchstabe folgt
- 10 → Materialkennung

Physikalische Dimensionen

Ringkern mit 9 Windungen D_a = Außendurchmesser D_i = Innendurchmesser

h = Höhe/Dicke

Hersteller

Amidon Associates Inc., 240 Briggs Avenue, Costa Mesa, California 92626, USA; www.amidoncorp.com

Bezugsquellen

Reichelt Elektronik GmbH & Co. KG, Elektronikring 1, 26452 Sande, Tel. (0 44 22) 95 53 33; www.reichelt.de Andy Fleischer, Paschenburgstr. 22, 28211 Bremen, Tel. (04 21) 35 30 60; www.andyquarz.de

Materialabhängige Eigenschaften

Material- kennung	Kernfarbe	nutzbarer Frequenzbereich [MHz]	Anfangs- permeabilität	Bemerkung			
		[МП2]	$\mu_{\rm i}$				
0	braun	50 300	1	Induktivität variiert stark mit Wickeltechnik			
1	blau	0,5 5	20	äquivalent zu Material 3, jedoch bessere Parameterstabilität			
2	rot	1 30	10	hohe Güte			
3	grau grau	0,05 0,5	35	hohe Parameterstabilität und Güte bei niedrigen Frequenzen			
6	gelb	250	8	sehr hohe Güte und Temperaturstabilität ¹			
7	weiß weiß	3 35	9	äquivalent zu Materialien 2/6, bessere Temperaturstabilität			
10	schwarz	10 100	6	hohe Güte und Parameterstabilität zwischen 40 und 100 MHz			
12	grün/weiß	20 200	4	hohe Güte, mittlere Temperaturstabilität			
15	■ rot/weiß	0,12	25	hohe Parameterstabilität, hohe Güte			
17	blau/gelb	20 200	4	äquivalent zu Material 12, bessere Temperaturstabilität ²			
18	rot/grün	00,5	55	Gleichstromdrosseln, Leistungsdrosseln ³			
26	gelb/weiß	01	75	Netzdrosseln, Gleichstromdrosseln, Drosseln ⁴			

¹ zwischen 20 und 50 MHz; 2 Güte sinkt um 10 % oberhalb 50 MHz und 20 % oberhalb 100 MHz; 3 bei Frequenzen über 50 kHz;

⁴ bis Frequenzen von 50 kHz

Kern-						Materia	Materialkennung						
größe	0	1	2	3	6	7	10	12	15	17	18	26	
T-12	0,3	4,8	2	6	1,7	_	1,2	0,75	5	0,75	_	_	
T-16	0,3	4,4	2,2	6,1	1,9	-	1,3	0,8	5,5	0,8	_	14,5	
Γ-20	0,35	5,2	2,5	7,6	2,2	2,4	1,6	1	6,5	1	_	18	
Г-25	0,45	7	3,4	10	2,7	2,9	1,9	1,2	8,5	1,2	17	23,5	
Γ-30	0,6	8,5	4,3	14	3,6	-	2,5	1,6	9,3	1,6	22	32,5	
Г-37	0,49	8	4	12	3	3,2	2,5	1,5	9	1,5	19	34,8	
Γ-44	0,65	10,5	5,2	18	4,2	4,6	3,3	1,85	16	1,85	_	36	
Γ-50	0,64	10	4,9	17,5	4	4,3	3,1	1,8	13,5	1,8	24	32	
Γ-68	0,75	11,5	5,7	19,5	4,7	5,2	3,2	2,1	18	2,1	29	42	
Γ-80	0,85	11,5	5,5	18	4,5	-	3,2	2,2	17	2,2	31	45	
Г-94	1,06	16	8,4	24,8	7	-	5,8	3,2	20	3,2	42	59	
Г-106	1,9	32,5	13,5	45	11,6	_	_	_	34,5	_	70	90	
Γ-130	1,5	20	11	35	9,6	10,3	_	-	25	4	_	78,5	
Г-157	_	32	14	42	11,5	-	_	-	36	5,3	_	97	
Γ-184	_	50	24	72	19,5	-	_	_	_	8,7	_	164	
Γ-200	_	25	12	42,5	10,4	-	_	-	-	-	_	89,5	
Г-200А	-	-	21,8	76,0	18	-	-	-	-	-	-	152,5	
Г-225	_	-	12	42,5	10	-	_	-	-	-	_	95	
Г-225А	-	-	21,5	-	-	-	-	-	-	-	-	160	
Г-300	_	-	11,4	-	-	-	-	-	_	-	-	80,0	
Г-300А	-	-	22,8	-	-	-	-	-	-	-	-	160	
Γ-400	_	-	18,5	-	-	-	-	-	_	_	-	130,0	
Г-400А	_	-	36	-	-	-	-	-	_	_	-	260	
Г-520	_	-	20,7	_	-	-	_	_	-	-	_	146	

Anmerkung: Ist ein Induktivitätsindex in der Tabelle nicht verfügbar, so wird die entsprechende Kerngröße nicht aus diesem Material hergestellt. Der A_L -Wert ist hier, korrelierend mit dem Mini Ringkernrechner [2], in einer anderen Maßeinheit angegeben als beim Hersteller. Dieser verwendet bei Ferrit-Ringkernen stets (mathematisch nicht korrekt) Millihenry pro 100 Windungen (mH/Wdg.); richtig wäre Millihenry pro (100 Windungen)², also: mH/(100 Wdg.)². Die Nichtbeachtung des Quadratzeichens hätte bei der Umrechnung gravierende Folgen. In dieser Bauelementeinformation findet als Maßeinheit mathematisch korrekt Nanohenry pro Windung zum Quadrat (nH/Wdg.²) Verwendung. Die Zahlenwerte verändern sich dadurch jedoch um den Faktor 10. Ein (umständliches!) Rechenbeispiel mit den vom Hersteller genutzten Maßeinheit mit A_L ist als Beispiel 3 in den Anwendungen aufgeführt. Zugehörige Rechenbeispiele mit der hier verwendeten Maßeinheit zeigen die Beispiele 1 und 2. Der Rechenweg wird dadurch viel leichter verständlich und weniger fehleranfällig.

Anwendungen

- Eisenpulver-Ringkerne sind dort einzusetzen, wo hohe Güten im HF-Bereich erreicht werden sollen, also z.B. bei Filtern, Antennenkopplern oder Resonanzkreisen allgemein.
- Der nutzbare Frequenzbereich ist durch das verwendete Material festgelegt. Durch die Farbkennzeichnung der Eisenpulver-Ringkerne ist ein einfacher Rückschluss auf das Material möglich.
- Durch die Dicke des Farbüberzugs sind die wirklichen Kernabmessungen etwas größer als die eines Ringkerns ohne diese Farbkennzeichnung.
- Jeder beim Wickeln durch das Innere des Ringkerns geführte Draht zählt als eine Windung.
- Die Induktivität L der mit einem Eisenpulver-Ringkern hergestellten Spule kann man mithilfe der Gleichung $L = A_L \cdot N^2$ errechnen, wobei der A_L -Wert die Materialkonstante des verwendeten Kerns und N die

- aufgebrachte Windungszahl darstellen.
- Beispiel 1: Gesucht ist die Induktivität L von N = 30 Windungen auf einem Eisenpulver-Ringkern T-80-15 mit einem A_L-Wert von 17 nH/Wdg.²

$$L = A_{\rm L} \cdot N^2$$

mit L [nH] und A_L [nH/Wdg.²]

 $L = 17 \cdot 30^2 = 15300 \text{ nH} = 15.3 \mu\text{H}$

Beispiel 2: Gesucht ist die Windungszahl N für eine Induktivität L = 7,2 μH (= 7200 nH) auf einem Eisenpulver-Ringkern T-80-6 mit einem A_L-Wert von 4,5 nH/Wdg.²

$$N = \sqrt{L/A_{\rm L}}$$

 $mit L [nH] und A_L [nH/Wdg.^2]$

 $N = \sqrt{7200 / 4.5} = 40$ Windungen

Beispiel 3 (nach Herstellerangaben):
 Gesucht ist die Induktivität L von 30 Windungen N auf einem Eisenpulver-Ringkern T-80-15 mit einem vom Hersteller angegebenen A_L-Wert von

"170 mH/100 Wdg."; korrekt wie erklärt 170 mH/(100 Wdg.)²

$$L = A_{\rm L} \cdot N^2 / 100^2$$

mit $L [\mu H]$ und $A_L [\mu H/(100 \text{ Wdg.})^2]$

$$L = 170 \cdot 30^2 / 100^2 = 15,3 \,\mu\text{H}$$

Die Nichtbeachtung des Quadratzeichens bei 100 Wdg. würde zu einem völlig falschen Ergebnis führen!

Vollig falschen Ergebnis fuhren!
Die Definition in Beispiel 1 ist klarer und leichter zu handhaben als die Amidon-Festlegungen, die letztendlich für Ferrit- und Eisenpulver-Ringkerne zwei verschiedene A_L-Wert-Maßeinheiten vorgeben, durch die missinterpretierbaren "pro 100 Wdg." bei Eisenpulver-Ringkernen besonders heikel.

Literatur

- [1] Warsow, K., DG0KW: DL5SWBs Mini-Ringkern-Rechner in neuer Version. FUNKAMATEUR 64 (2015) H. 12, S. 1282–1283
- [2] Warsow, K., DG0KW: mini Ringkern-Rechner Version V1.3.1. www.dl0hst.de → Software → Mini Ringkernrechner