FUNKAMATEUR - Bauelementeinformation

Logarithmisches 32-Schritt-Digitalpotentiometer

MAX5407

Grenzwerte

Parameter	Kurzzeichen	min.	max.	Einheit	
Betriebsspannung	U_{B}	-0,3	6	V	
Signalamplituden gegen Masse:					
H, W, L, CS, /ZCEN, U//D	$\mathrm{U}_{\mathrm{sig}}$	-0,3	$U_B + 0.3$	V	
Speichertemperaturbereich	T_{SP}	-65	150	°C	
Betriebstemperaturbereich	T_B	-40	85	°C	
Löttemperatur (10 s löten)	${ m T_L}$		300	°C	

Kennwerte (U_B =+2,7 bis +5,5 V, T_B = T_{min} bis T_{max} , typisch U_B =+5 V, T_B =25 °C)

Parameter 1	Kurzzeichen	min.	typ.	max.	Einheit
Anzahl Widerstandsschritte		32			Schritte
Endwiderstand	$R_{\rm E}$	15	20	25	$k\Omega$
maximale Einsatzfrequenz	f_{max}		500		kHz
absolute Dämpfungstoleranz	a _{abs}		$\pm 0,25$	±1	dB
Dämpfungstoleranz	200				
zwischen zwei Schritten	a_{step}		± 0.05	$\pm 0,1$	dB
Klirrfaktor + Rauschen bei	r.				
$U_{in} = 1 \text{ V}, f = 1 \text{ kHz},$					
Schritt = -6 dB	k		0,002		%
Betriebsspannungsentkopplung	a_{UB}		-80		dB
Gesamtwiderstands-					
Temperaturkoeffizient	TK_{RG}		35		ppm/°C
Teilwiderstands-					
Temperaturkoeffizient	TK_{RX}		5		ppm/°C
Abgriffswiderstand					
bei $U_B = 2.7 \text{ V}$	R_s		400	1700	Ω
Digitaleingänge					
Eingangsspannung					
High	U_h	2,4			V
Low	U_1	2,4		0,8	V
Eingangsleckstrom	I_{lk}			±1	μA
Eingangskapazität	C _{in}		5	-1	pF
Emgangskapazitat	C _{in}		3		PΙ
Zeitverhalten					
Up-Down-Modus					
bis Chip Select-Setup	t_{cu}	25			ns
Chip Select					
bis Up-Down-Schritt-Setup	t_{ci}	25			ns
Chip Select					
bis Up-Down-Schritt-Haltezeit	t _{ic}	25			ns
Up-Down-Schritt Low-Periode	t _{il}	25			ns
Up-Down-Schritt High-Periode		25			ns
Up-Down-Schritt High-Periode	t_{ih}	25			ns
Up-Down-Umschaltrate	f_{wd}			7	MHz
Abgriffsschaltzeit					
bei abgeschalteter					
Nulldurchgangserkennung	t_{as}		0,1		μs
Nulldurchgangs-Timeout	t_{nto}		50		ms
Spannungsversorgung					
Betriebsspannung	U_{B}	2,7		5,5	V
Betriebsstrom (alle Eingänge 0)	_	, .		7-	
bei $f_{wd} = 2 \text{ MHz}$	I_B		100		μA
bei Nichtumschaltung d. Abgrif	_		0,35	1	μA
	ъ				<u>'</u>

Kurzcharakteristik

- 3 mm × 3 mm 8-Pin-SOT23-Gehäuse
- logarithmisch einstellbar mit 1-dB-Schrittfolge zwischen zwei Werten
- 32 Einstellpositionen
- geringe Betriebsstromaufnahme
- einpolige Betriebsspannung
- Nulldurchgangserkennung zur Minimierung von Audio-Klicks während der Umschaltphase
- einfaches serielles 2-Draht-Daten-Interface
- Power-On-Reset
- 20-kΩ-Gesamtwiderstand

Beschreibung

Der MAX5407 ist ein digital in 32 Schritten zu je 1 dB logarithmisch einstellbares Potentiometer-IC. Das Bauelement eignet sich besonders für Audio-Anwendungen, wie Lautstärke- und Balanceregelungen. Enthalten ist eine Widerstandszeile und CMOS-Schalter, die mittels eines einfachen seriellen 2-Draht-Interfaces digital gesteuert werden können.

Das IC erfüllt so die Funktionen eines normalen mechanischen Potentiometers bei einem Endwiderstand von insgesamt 20 k Ω . Durch eine spezielle Nulldurchgangserkennung der Audio-Signalamplitude werden Umschaltklicks minimiert.

Anschlußbelegung

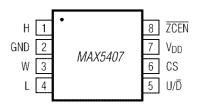


Bild 1: Pinbelegung (Draufsicht) des ICs im SOT-23-Gehäuse

Prinzipschaltung

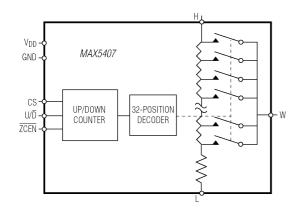


Bild 2: Blockschaltbild

Pin-Beschreibung

Pin	Name	Funktion
1	Н	oberes Widerstandsende ("High")
2	GND	Masse
3	W	"Schleifer"-Anschluß (Abgriff der Teilwiderstände)
4	L	unteres Widerstandsende ("Low")
5	U//D	Up-Down-Steuerungseingang.
		Wenn CS High ist, erhöht bzw. erniedrigt eine
		L-H-Flanke die "Schleifer"-Position, abhängig
		vom Modus.
6	CS	Chip-Select-Eingang.
		Eine L-H-Flanke bestimmt den Modus:
		Inkrement, wenn U//D=High;
		Dekrement, wenn U//D=Low.
7	V_{DD}	Betriebsspannung
8	/ZCEN	Aktivierung Nulldurchgangserkennung.
		Low-Signal an /ZCEN aktiviert die Funktion.

Wichtige Diagramme

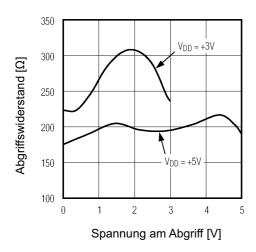


Bild 3: Abgriffswiderstand in Abhängigkeit von der Abgriffsspannung bei verschiedenen Betriebsspannungen

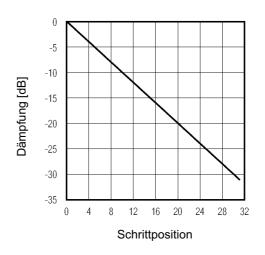


Bild 5: Ausgangssättigungsspannung in Abhängigkeit vom Laststrom

Detailbeschreibung der Modi

Der MAX5407 verfügt über zwei Arbeitsmodi bei aktivem seriellem Interface: Inkrement-Modus und Dekrement-Modus. Das serielle Interface ist nur aktiv, wenn CS auf High liegt. Die Eingangssignale für CS und U//D steuern die Positionierung der Abgriffe entlang der Widerstandszeile. Ist der Pegel an U//D High, bevor CS auf High gelegt wird, so schaltet

das IC in den Inkrement-Modus. Jede weitere L-H-Flanke an U//D erhöht dann den Widerstandswert an [W] gegen [L], bis CS wieder Low ist. Ist der Pegel an U//D Low, wenn CS High wird, so schaltet das IC in den Dekrement-Modus. Jede Folgeflanke an U//D verringert dann der Widerstandswert an [W] gegen [L] entsprechend.