FUNKAMATEUR - Bauelementeinformation

Low-Power-Vierfach-Operationsverstärker

LM	124
LM	224
LM	324

Grenzwerte							
Parameter	Kurzzeichen	min.	max.	Einheit			
Betriebsspannung	±U _B		16	V			
Gleichtakteingangsspannung	U_{EG}	$-U_{B}$ $-0.3 V$	$+U_B$				
Differenzeingangsspannung	U_{ED}		32	V			
Eingangsstrom	$I_{\rm E}$		50	mA			
Verlustleistung	P_{tot}						
Suffix N			500	mW			
Suffix D			400	mW			

Kennwerte (+U_B = 5 V, -U_B = 0 V, ∂_A = 25 °C)

Parameter	Kurzzeichen	min.	typ.	max.	Einheit
Ruhestrom	I_{B0}		0,7	1,2	mA
Offsetspannung	U_{O}		2		mV
LM 124, 224				5	mV
LM 324				7	mV
Offsetstrom	I_{O}		2	30	nA
Biasstrom	I_{B}		20	150	nA
Großsignalverstärkung	$V_{\rm u}$				
bei $+U_B = 15 \text{ V} \text{ und } R_L = 20 \text{ m}$	kΩ	$5 \cdot 10^{4}$	10^{5}		
Ausgangsstrom	I_A				
bei $+U_B = 15 \text{ V} \text{ und } U_A = 2$	2 V	10	20		mA
Slew Rate	SR				
bei $+U_B = 15 \text{ V}$, $R_L = 2 \text{ k}\Omega$	2				
und $C_L = 100 \text{ pF}$			400		$mV/\mu s$
äquivalente Rauscheingang	gs- U _{än}				
spannung bei $+U_B = 30 \text{ V}$,					
$f = 1 \text{ kHz}, R_Q = 100 \Omega$			40		nV/\sqrt{Hz}
Kanaltrennung	D				
bei $f = 120 \text{ kHz}$			120		dB

Kurzcharakteristik

- geringer Ruhestromverbrauch
- kleiner Biasstrom (Eingangsruhestrom)
- geringe Offsetspannung (Suffix A max. 3 mV)
- kleiner Offsetstrom
- weiter Betriebsspannungsbereich (±1,5...15 V)
- interne Frequenzkompensation
- Einsatztemperaturbereich LM 124 –55...+125 °C, LM 224 –40...+105 °C und LM 324 0...70 °C
- ausgangskurzschlußfest bei max. 15 V Gesamtbetriebsspannung
- Stromaufnahme des Ausgangs bei 15 V Gesamtbetriebsspannung und 2 V Ausgangsspannung min. 20 mA und typ. 40 mA
- maximale Ausgangsspannung bei 30 V Gesamtbetriebsspannung und 2 kΩ Lastwiderstand min. 26 V
- Ausgangssättigungsspannung max. 20 mV
- Verstärkungs-Bandbreite-Produkt typ. 1,3 MHz
- Klirrfaktor bei 1 kHz,
 30 V Gesamtbetriebsspannung,
 2 VSS Ausgangsspannung und
 20 dB Verstärkung typ. 0,015 %
- Lieferung im DIP 14 (Suffix N) oder SO-14-Gehäuse (Suffix D)

Interner Aufbau

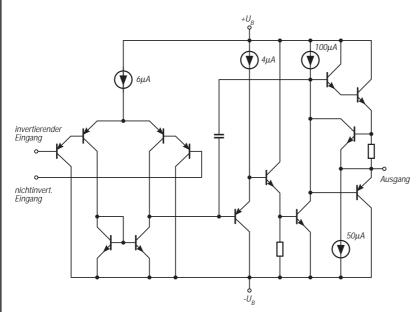


Bild 1: Schaltung eines Operationsverstärkers

Pinbelegung

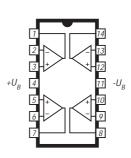


Bild 2: Anschlußbelegung für alle Spezifikationen und Gehäuse

Wichtige Diagramme

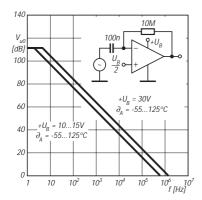


Bild 3: Leerlaufverstärkung über der Frequenz. Der Widerstand wirkt nicht gegenkoppelnd.

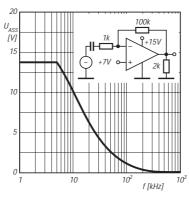


Bild 4: Aussteuerbarkeit des Ausgangs als Funktion der Frequenz bei 40 dB Verstärkung

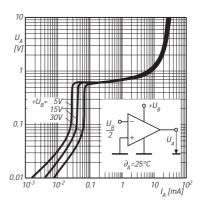


Bild 5: Höchstmögliche Ausgangsspannung als Funktion des positiven Ausgangsstroms

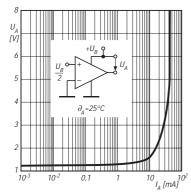


Bild 6: Höchstmögliche Ausgangsspannung gegen +U_B über der Ausgangsstromaufnahme

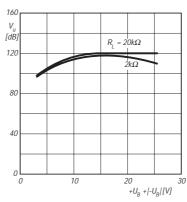


Bild 7: Typische Spannungsverstärkung als Funktion der Gesamtbetriebsspannung

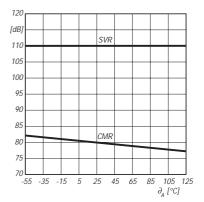


Bild 8: Betriebsspannungs- und Gleichtaktunterdrückung über der Einsatztemperatur

Typische Applikationsschaltungen

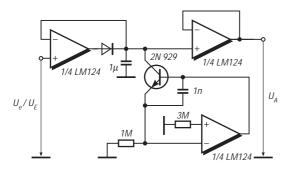


Bild 9: Spitzenwertgleichrichter mit geringer Drift

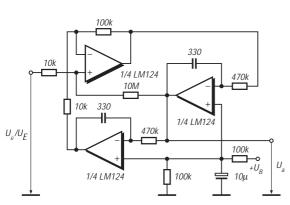


Bild 11: Aktiver 1-kHz-Bandpaß mit 40 dB Verstärkung und Q = 50

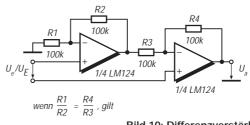
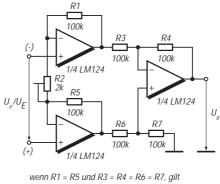



Bild 10: Differenzverstärker mit sehr hohem Eingangswiderstand

wenn R1 = R5 und R3 = R4 = R6 = R7, gilt $V = [1 + \frac{2R_1}{1}]$

Bild 12: Instrumentationsverstärker mit sehr hohem Eingangswiderstand