FUNKAMATEUR – Bauelementeinformation

Vorteiler-Schaltkreis 1 : 100 bis 150 MHz

'8629

Grenzwerte

Parameter	Kurzzeichen min.		max.	Einheit	
Versorgungsspannung	Us		8	V	
Eingangsspannung	$U_{\rm I}$		U_{S}	_	
Ausgangsstrom	U_{o}		40	mA	
Strom in Pin 5	I_5		20	mA	
Sperrschichttemperatur	$\delta_{\scriptscriptstyle m I}$		150	°C	
Lagertemperatur	δ_{S}	-55	150	°C	

Kennwerte ($U_S = 5.2 \text{ V}, U_{iSS} = 600 \text{ mV}, \delta_A = 25 ^{\circ}\text{C}$)

Parameter	Kurz- zeichen	min.	typ.	max.	Einheit
Versorgungsspannung	Us	4,68		5,72	v
Versorgungsstrom	I_S		33	45	mA
Arbeitstemperatur	ϑ_{A}	-30		70	°C
Höchste Eingangsfrequenz	f_{imax}	150		200	MHz
Niedrigste Eingangsfrequenz	\mathbf{f}_{imin}	10			MHz
Einfache Eingangsspannung	U_{iGSS}	0,2		1	V
Differenzeingangsspannung	U_{iDSS}	0,1		1	V
Niedrigste Slew Rate					
bei Rechteck-Eingangssignal	SR			50	Vus^{-1}
H-Ausgangsspannung	U_{OH}				
bei $U_S = 4,68 \text{ V}, O_{OH} = -0,4 \text{ mA}$		2,4			v
bei $U_S = 5,72 \text{ V}, I_{OH} = -1,6 \text{ mA}$		2,0			V
L-Ausgangsspannung	U_{OL}				
bei $U_S = 4,68 \text{ V}, I_{OL}$				0,5	V
Spannung an Pin 5	U_5				
bei $I_2 = 5 \text{ mA}$		6,3			V

Blockschaltbild

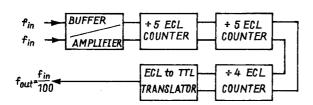


Bild 1: Innenaufbau des Teilerschaltkreises. Nach der Impedanzwandlung (Buffer) und Verstärker (Amplifier) durchläuft das Signal drei ECL-Teilerstufen. Die Wandlerstufe am Ausgang (Translator) stellt ein TTL-Signal zur Weiterverarbeitung bereit.

Kurzcharakteristik

- Fester Teilerfaktor von 100
- Eingangssignal gegen Masse oder als Differenzsignal zuführbar
- Interner Eingangsverstärker
- Ausgang TTL-kompatibel
- Einfache Versorgungsspannung 5,2 V ± 10 %
- Arbeitstemperatur −30 . . . 70 °C
- Bei Rechteck-Eingangssignal 0...150 MHz
- Bei Sinus-Eingangssignal 10...150 MHz
- Leistungsaufnahme typisch 170 mW

Schaltungsbeschreibung

Der Teiler vom Typ 8629 ist hauptsächlich in ECL-Technik gefertigt und besitzt ein 8poliges DIL-Gehäuse. Den internen Blockaufbau zeigt Bild 1. Um den ECL-Teil von der TTL-Sektion zu entkoppeln, besitzen diese Teile getrennte Versorgungsspannungs- und Masseanschlüsse. Durch den Eingangsverstärker können auch sehr kleine Signale verarbeitet werden. Je nachdem, ob die Eingansspannung an Pin 6 oder 7 gelegt wird, erfolgt die Triggerung auf fallende oder steigende Flanke. Die Ausgangsstufe ist ähnlich zur Low-Power-Schottky-TTL-Technik ausgeführt. Im Ausgangssignal werden Harmonische oder FM-Anteile unterdrückt, da die ECL-Technik ein Übersprechen verhindert. Die interne Z-Diode erlaubt eine simple Spannungsstabilisierung mit einem externen pnp-Transistor.

Applikationsschaltungen

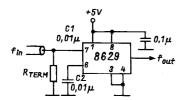


Bild 2: Universelle Teilerstufe mit Leitungsanpassung durch R_{TERM}

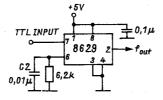


Bild 3: Teilung eines TTL-Signals; sehr geringe Frequenzen sind möglich

Pinbelegung

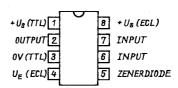


Bild 4: Anschlußbelegung des 8poligen DIL-Gehäuses (Draufsicht)