FUNKAMATEUR – Bauelementeinformation

Micropower-DC/DC-Konverter für feste und einstellbare Ausgangsspannung

LT 1073

Grenzwerte

Parameter	Kurzzeich	nen min.	max.	Einheit
Eingangsspannung	Uı		1.4	
Step-Up-Mode			15	V
Step-Down-Mode			36	V
Spannung am Pin 3	U_3		50	V
Spannung am Pin 4	U_4	-0.4	$U_{\rm I}$	V
Spannung am Pin 8	U_8		5	V
Schaltstrom	I_{SW}		1,5	A
Verlustleistung	P_{tot}		500	mW

Kennwerte ($\delta_A = 25 \,^{\circ}\text{C}, \, \text{U}_3 = 1,5 \,^{\circ}\text{V}$)

Parameter	Kurzzeichen	min.	typ.	max.	Einheit
Ruhestrom	I_{SR}			14450	
Switch Off				95	μA
Step-Up-Mode, ohne Last					
LT 1073-5				135	μ A
LT 1073-12				250	μΑ
Eingangsspannung	$U_{\rm I}$				
Step-Up-Mode		1		12,6	V
Step-Down-Mode				30	V
Ausgangsspannung	U_{O}				
LT 1073-5		4,75	5	5,25	V
LT 1073-12		11,4	12	12,6	V
Oszillatorfrequenz	f_{OSZ}	15	19	23	kHz
Tastverhältnis	TV	65	72	80	%
EIN-Zeit	t_{ON}	30	38	50	μs
Höchstmöglicher					
Ausgangsstrom	I_{LIM}				
$(R = 220 \Omega \text{ zwischen Pin 1 und 2})$			400	mA	

Übersichtsschaltplan

Bild 1: Interner Aufbau des LT 1073

Anschlußbelegungen

_		
I LIM 1	0	8 FB
$U_{\rm I}$ 2		7 SET
SW1 3		6 A0
SW2 4		5 GND

Bild 2: Pinbelegung beim Gehäuse Plastic DIP (CN)

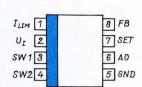


Bild 3: Pinbelegung beim Gehäuse Plastic SOIC (CS)

Kurzcharakteristik

- feste Ausgangsspannung von 5 V bzw.
 12 V mit den Spezifikationen LT 1073-5 bzw. LT 1073-12 und je drei externen Bauelementen
- einstellbare Ausgangsspannung zwischen 3 V und 24 V mit dem LT 1073 und fünf externen Bauelementen
- Step-Up- oder Step-Down-Betrieb
- besonders vorteilhaft für Step-Up-Anwendungen bei Eingangsspannungen bis 3 V
- interner Komparator zur Überwachung der Eingangsspannung
- Ausgangsstrom kann mit zusätzlichem Widerstand zwischen Pin 1 und 2 begrenzt werden
- interner 1-A-Leistungsschalter
- bereits ab 1V Eingangsspannung funktionsfähig
- vielfältig in den Bereichen Video, Kommunikation, Computer und Meßtechnik einsetzbar

Funktion

Die IS ist so aufgebaut, daß die Stromaufnahme immer dann sehr gering ist, wenn im Betrieb die Spannung an Pin 8 (Feedback) größer als die Referenzspannung ist. Bild 1 zeigt den Blockaufbau. Der Komparator A1 vergleicht interne Referenzspannung und Spannung an Pin 8. Ist letztere kleiner als 212 mV, schaltet A1 den 19-kHz-Oszillator ein. Ein nicht eingezeichneter Funktionsblock sorgt für einen günstigen Betrieb des Schalttransistors (optimale Sättigung), was den Wirkungsgrad erhöht. Durch das Schalten des Transistors steigt die Spannung an Pin 8. Wird sie größer als 212 mV, schaltet A1 den Oszillator aus. Eine kleine Hysterese sichert dabei Stabilität ohne externe Frequenzkompensation. Der Oszillator ist intern auf 38 µs Einschaltzeit und 15 µs Ausschaltzeit dimensioniert. A2 kann vielseitig, z. B. als Unterspannungsdetektor, eingesetzt werden. Sein Open-Collector-Ausgang AO kann 100 µA aufnehmen. Für die Ausgangsspannung bei den Bildern 7,8 und 9 gilt

$$|\mathbf{U}_0| = \left(1 + \frac{\mathbf{R}_2}{\mathbf{R}_1}\right) 212 \,\mathrm{mV}.$$

Bezugsquelle:

Der LT 1073 wird von Reichelt-Elektronik zum Preis von 14,80 DM angeboten.

Diagramme

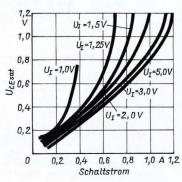


Bild 4: Sättigungsspannung in Abhängigkeit vom Schaltstrom (Step-Up)

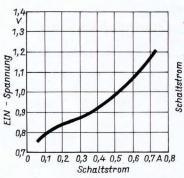


Bild 5: EIN-Spannung als Funktion des Schaltstroms (Step-Down)

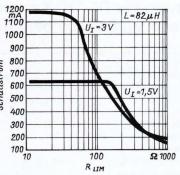


Bild 6: Maximaler Schaltstrom als Funktion des Widerstands zwischen Pin 1 und 2

Grundschaltungen

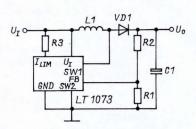


Bild 7: Beschaltung für Step-Up-Mode

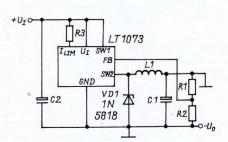


Bild 9: Positiv-zu-negativ-Wandler

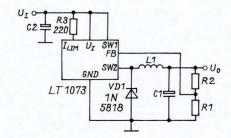


Bild 8: Beschaltung für Step-Down-Mode

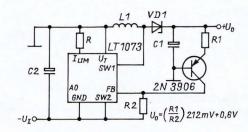


Bild 10: Negativ-zu-positiv-Konverter

Applikationsschaltung

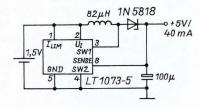
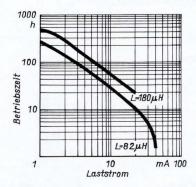



Bild 11: Typische Einsatzschaltung für eine feste Ausgangsspannung

Bild 12: Kontinuierliche Betriebszeit als Funktion des Laststroms für eine Alkaline-Zelle vom Typ AA

