FUNKAMATEUR - Bauelementeinformation

Schnellade-Schaltkreis für NiCd- und NiMH-Akkus

MAX 2003

Parameter	Kurzzeichen	min.	max.	Einheit
Spannung an allen Pins				
gegen Masse	U_X	0,3	6	V
Verlustleistung	P_{tot}			
Plastik-DIP bis $\partial_A = 70^{\circ}$ C			842	mW
SO-Gehäuse, schmal,				
bis $\partial_A = 70^{\circ}$ C			696	mW
SO-Gehäuse, breit,				
bis $\partial_A = 70^{\circ}$ C			762	mW

Kennwerte ($U_{CC} = 5 \text{ V}, \partial_A = 0...70 \text{ }^{\circ}\text{C}$)

Parameter	Kurzzeichen	min.	typ.	max.	Einheit	
Betriebsspannung	U _{CC}	4,5	5	5,5	V	
Betriebsstrom	I_{CC}		0,75	2,2	mA	
Akkuspannung	U_{BAT}	0		U_{CC}	V	
End-of-Discharge-Spannung	U_{TS}	0,2U _{CC} -30 n	nV	0,2U _{CC} +30	mV	
Low-Temperature-						
Schwellspannung	U_{LTF}	0,4U _{CC} -30 m	ıV	0,4U _{CC} +30	mV	
High-Temperature-						
Schwellspannung	U_{HTF}					
bei U _{TCO} =1,4 V		$U_{LTF}/8+1,225 \text{ V}$				
Sense-Trip-H-Spannung	U_{SNSHI}	$0.05~\mathrm{U_{CC}}$				
Sense-Trip-L-Spannung	U_{SNSLO}	$0,044~\mathrm{U_{CC}}$				
MOD-Schaltfrequenz	f_{MOD}			100	kHz	
Umgebungstemperatur	∂_{A}	0		70	°C	

Kurzcharakteristik

- Steuerelement zum schnellen Laden und Konditionieren von NiCd- und NiMH-Akkus
- entweder als geschalteter Stromregler oder als Steuerbaustein für eine externe Stromquelle einsetzbar
- fünf Abschaltkriterien anwendbar: Gradient des Temperaturanstiegs, negative Änderung der Ladespannung, maximale Temperatur, Zeit oder Ladespannung
- Möglichkeit der vollständigen Entladung vor dem Aufladen
- "Top off"-Laden: Laden bis zur maximalen Kapazität nach dem schnellen Laden
- Anschlüsse für Statusanzeige-LEDs
- 16poliges DIP oder SMD-Gehäuse

Interner Aufbau

LTF-Über-TCO-Über-Zeit-steuerung Oszillator wachung wachung **TEMP** Anzeigesteueruna CHG $(U_{TS} - U_{SNS})$ CCMD → Lade-A/D-DCMD steuerungs-Haupteinheit $(U_{BAT} - U_{SNS})$ DVFN -EDV-Über-Entlade-Modulations-MCV-Über-MCV steuerung steuerung wachung

Bild 1: Blockaufbau des intelligenten Ladeschaltkreises

Anschlußbelegung

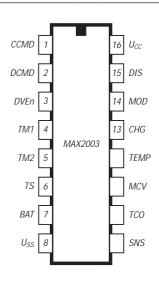


Bild 2: Pinbelegung für beide Gehäusevarianten

Wichtige Diagramme

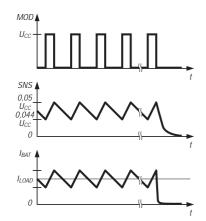


Bild 3: Typische Signalverläufe bei der Stromregelung mit einem SNS-Widerstand. Dieser Widerstand liegt zwischen Pin 9 und Masse. Pin 9 ist ein Schmitt-Trigger-Eingang mit den Schwellen 0,044 U_{CC} und 0,05 U_{CC}. Teilt man den Mittelwert durch den SNS-Widerstand, erhält man den Ladestrom.

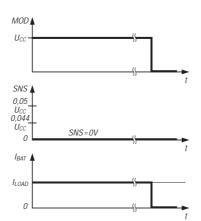


Bild 4: Grundsätzlicher Verlauf der Spannungen an den Pins 14 (oben) und 9 (Mitte) sowie des Ladestroms bei Betrieb ohne SNS-Widerstand. Pin 9 wird dabei direkt an Masse geschaltet. Die Spannung an Pin 14 und der Ladestrom ändern sich zeitgleich.

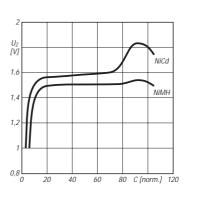


Bild 5: Kapazität und Zellspannung

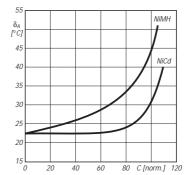


Bild 6: Kapazität und Temperatur

Typische Anwendungsschaltung

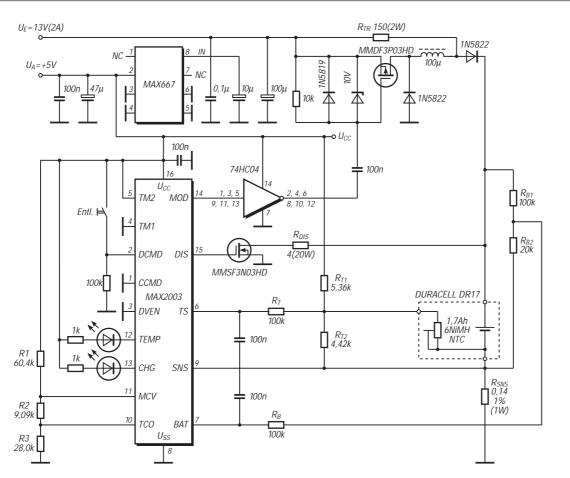


Bild 7: Gepulster Betrieb für NiMH-Akkus mit Abschaltung nach dem Kriterium $\Delta T/\Delta t$