FUNKAMATEUR - Bauelementeinformation

PLL-Schaltkreis mit Paralleleingang für Teiler-Doppelbetrieb

MC 145152-2

Grenzwerte

Parameter	Kurzzeichen	min.	max.	Einheit
Betriebsspannung	U _B	-0,5	10	V
Betriebsstrom	I_B		30	mA
Eingangsspannungen	U_{E}		$U_B+0,5 V$	
Ein- und Ausgangsströme	$I_{E/A}$	-10	10	mA
Verlustleistung	P_{tot}			
bis $\partial_A = 65 ^{\circ}\text{C}$			500	mW

Kennwerte ($U_B = 5 \text{ V}, \partial_A = 5 ^{\circ}\text{C}$)

Parameter	Kurzzeichen	min.	typ.	max.	Einheit
Betriebsspannung	U_{B}	3		9	V
Betriebsstrom	I_B				
bei $f_e = f_O = 10 \text{ MHz}$,					
R = N = 128 und A = 32			7,5		mA
Ruhestrom	I_{B0}		1,2		mA
Sinuseingangsspannungen	$U_{e/O}$	500			mV_{SS}
L-Eingangsspannungen	U_{EL}			1,5	V
H-Eingangsspannungen	U_{EH}	3,5			V
Pull-up-Eingangsströme	I_{EP}	20		200	μΑ
Sink-Ausgangsströme					
bei $U_A = 400 \text{ mV}$	I_{ALMC}	1,7			mA
	I_{ALX}	510			μΑ
Source-Ausgangsströme					
bei $U_A = 4.6 \text{ V}$	I_{AHMC}	-750			μΑ
	I_{AHX}	-510			μΑ
Eingangsfrequenzen					
bei R und N min. 8	$f_{e/O}$				
und 500 mV _{SS} Sinuseingangsspannung				15	MHz
und Rechteck- $U_{eSS} = U_{B}$				22	MHz

Kurzcharakteristik

- CMOS-Technik
- Referenzoszillator extern oder on chip möglich
- Lok-Detekt-Signal
- acht R-Teilerfaktoren möglich
- N-Teilerfaktorbereich 3...1023
- A-Teilerfaktorbereich 0...63
- "linearisierter", digitaler Phasendetektor
- Einsatztemperaturbereich –40...85 °C
- lieferbar im Plastik-DIP (Suffix P) oder SOG-Gehäuse (Suffix DW)

Pinbelegung

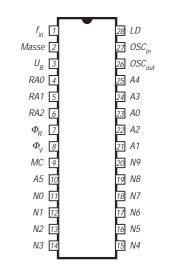


Bild 1: Anschlußbelegung

Interner Aufbau

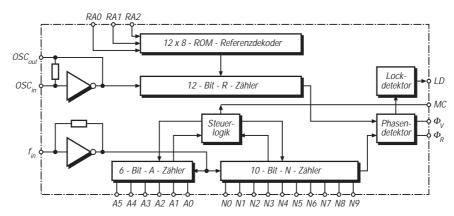


Bild 2: Blockaufbau des CMOS-PLL-Schaltkreises

Anwendungshinweise

Der MC145152-2 besitzt Schutzschaltungen gegen zu hohe statische Spannungen oder elektrische Felder. Trotzdem müssen die üblichen Vorkehrungen zum Vermeiden von Beschädigungen durch diese Effekte getroffen werden. Insbesondere sollte gesichert sein, daß keine Eingangsspannungswerte außerhalb des Betriebsspannungsbereichs auftreten.

Bei einem Pull-up-Widerstand von 4,7 k Ω betragen die Drain-Source-Durchbruchspannungen an den Ausgängen 15 V.

Nicht genutzte Eingänge müssen auf ein Potential gleich oder nahe Masse bzw. gleich oder nahe U_B gelegt werden.

Über 65 °C Umgebungstemperatur sinkt die maximal zulässige Verlustleistung beim Plastik-DIP mit 12 mW/K und beim SOG-Gehäuse mit 7 mW/K.

Die höchstmögliche Arbeitsfrequenz kann mit folgender Formel ermittelt werden:

$$f_{emax} = P/(t_P + t_{set})$$

- P Teilerfaktor
- t_P Verzögerungszeit f_e/MC
- t_{set} Setup-Zeit des externen Teilers

Im gesamten Umgebungstemperaturbereich beträgt t_P maximal 120 (70, 40) ns bei 3 (5, 9) V Betriebspannung. Wird z.B. der Teiler MC 12028A mit 16 ns Setup-Zeit benutzt, und beträgt P 64, so ergeben sich 744 MHz als höchstmögliche Arbeitsfrequenz.

Als Tiefpaßfilter eignet sich bereits ein RC-Glied. Weiterhin ist ein aktives Filter möglich.

Über die Pins 4, 5 und 6 (RA – Reference Address) werden die Teilerfaktoren des R-Zählers festgelegt. Soll umgeschaltet werden, sollten Pull-up-Widerstände vorgesehen werden, damit die Eingänge nicht kurzzeitig unbeschaltet sind.

Oszillatorbeschaltung

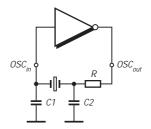


Bild 3: Grundsätzliche Außenbeschaltung des Oszillators

R-Teilerfaktorfestlegung

RA2	RA1	RA0	Teilerfaktor
0	0	0	8
0	0	1	64
0	1	0	128
0	1	1	256
1	0	0	512
1	0	1	1024
1	1	0	1160
1	1	1	2048

Typische Applikationsbeispiele

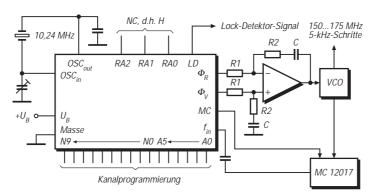


Bild 4: Synthesizer für VHF-Transceiver (Oszillatorfrequenz 10,24 MHz). Der MC 12017 ist ein Teiler :64 oder :65. Der MC 33171 bildet das aktive Schleifenfilter.

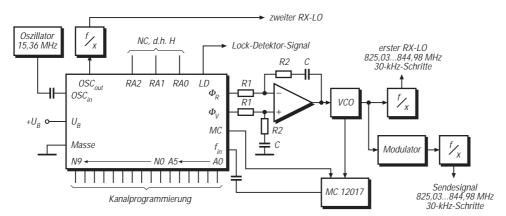


Bild 5: Synthesizer für 666 UHF-Kanäle. R-Teilerfaktor 2048, N-Teilerfaktoren 429...440, A-Teilerfaktoren 0...63. Für höhere VFO-Frequenzen kann statt des MC 12017 ein Teiler mit höherem Eingangsfrequenzbereich genutzt werden.