Hans-Jürgen Brockmann

Coherent Mathematical Treatment of the Mutual Inductive and Resistive Coupling Acting in Electromagnetic Transformers

Coherent measurements of the frequency response of the mutual resistance and the mutual inductance caused by the mutual Proximity-Effect

Derivation of the universal formula for the determination of the maximum possible power transfer efficiency:

$$
\left.\left.\eta_{\max }=\frac{\mathrm{k}_{\text {ind }}{ }^{2} \cdot \mathrm{Q}_{1} \cdot \mathrm{Q}_{2}+\mathrm{k}_{\text {prox }}^{2}}{\left(\sqrt{1+\mathrm{k}_{\text {ind }}}{ }^{2} \cdot \mathrm{Q}_{1} \cdot \mathrm{Q}_{2}\right.}+\sqrt{1-\mathrm{k}_{\text {prox }}}{ }^{2}\right)^{2}\right)
$$

Copyright © Hans-Jürgen Brockmann 2014
ISBN 978-952-93-4410-9
Helsinki 2014
Unigrafia Oy Yliopistopaino

Abstractum

with foundation of the two separate coupling coefficients $k_{\text {ind }}$ and $k_{\text {prox }}$:
Assuming a loss-free transformer, of which primary and secondary coil have the same inductances at not neccessarily identical turn numbers, the coupling coefficient is equal to the ratio of the no-load output voltage to the input voltage. But at different inductances we have to consider the transformer not only in the forward direction but also in the backward direction, and finally we have to form the geometrical mean of the inductances. Then according to page 22 of Chapter 1 is :

$$
\mathrm{k}_{\text {ind }}=\sqrt{\frac{\mathrm{C}}{\mathrm{~A}} \cdot \frac{\mathrm{~B}}{\mathrm{D}}}=\sqrt{\frac{\mathrm{M}}{\mathrm{~L}_{1}} \cdot \frac{\mathrm{M}}{\mathrm{~L}_{2}}}=\frac{\mathrm{M}}{\sqrt{\mathrm{~L}_{1} \cdot \mathrm{~L}_{2}}} \quad \quad=k_{i}, \text { a shortened notation only. }
$$

Analogously, the following holds for a pure resistive four-terminal network, called also two-port network:

$$
\mathrm{k}_{\text {prox }}=\sqrt{\frac{\mathrm{C}}{\mathrm{~A}} \cdot \frac{\mathrm{~B}}{\mathrm{D}}}=\sqrt{\frac{\mathrm{R}_{\mathrm{m}}}{\mathrm{R}_{1}} \cdot \frac{\mathrm{R}_{\mathrm{m}}}{\mathrm{R}_{2}}}=\frac{\mathrm{R}_{\mathrm{m}}}{\sqrt{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}} \quad=\mathrm{k}_{\mathrm{r}} \text {, a shortened notation only. }
$$

These both coupling coefficients are real numbers. But if we accept and combine the coherent character of both equations of the four trminal network, we obtain the complex coupling coefficient:

$$
k=\sqrt{\frac{C}{A} \cdot \frac{B}{D}}=\sqrt{\frac{\left(R_{m}+j \cdot \omega \cdot M\right)}{\left(R_{1}+j \cdot \omega \cdot L_{1}\right)} \cdot \frac{\left(R_{m}+j \cdot \omega \cdot M\right)}{\left(R_{2}+j \cdot \omega \cdot L_{2}\right)}}=\frac{R_{m}+j \cdot \omega \cdot M}{\sqrt{\left(R_{1}+j \cdot \omega \cdot L_{1}\right) \cdot\left(R_{2}+j \cdot \omega \cdot L_{2}\right)}}
$$

Here I would like to cofess that during all my own work in the development laboratory including the optimization of the efficiency of small transformers, it was always quite common to use the directly measured values of $\mathrm{L}_{1}, \mathrm{R}_{1}, \mathrm{~L}_{2}, \mathrm{R}_{2}$ and both short circuit inductances, from which the inductive coupling coef-
ficient has been approximately calculated according to $\sqrt{1-\frac{L_{1 s c}}{\mathrm{~L} 1}}=\sqrt{1-\frac{\mathrm{L}_{2 \mathrm{sc}}}{\mathrm{L}_{2}}} \quad$ ($\mathrm{sc}=$ short circuit)
But after the laboratory was equipped with an impedance analyser, I could determine all 4 complex coefficients of a four terminal network, based on the complex open-circuit and short-circuit impedance measurement values. That calculation I derived mathematically and is described here in Chapter 7. But already in the middle of Chapter 1 I applied polar coordinates. Other versions are from a later date after my retirement: Furthermore I derived formulae for the separate $\mathrm{k}_{\text {ind }}$ and $\mathrm{k}_{\text {prox }}$ as functions of $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and the complex coupling coefficient $\mathrm{k}=\mathrm{k}_{\text {real }}+\mathrm{i} \cdot \mathrm{k}_{\mathrm{im}}$, and vice verta. In Chapter 5 , starting from unbalanced measurement values, but forming the complex geometric mean of A and D , I applied polar coordinates, and compared results with previous calculations, balanced via the created Complex Relative-Error Equalization Theory, the CREET of Chapter 2. But in Chapter 6 I began the calculation of R_{m} and M with the complex geometrical mean of both short circuit impedances.

In Germany I had certainly derived already formulae for the mutual resistance R_{m} and the mutual inductance M. And finally later in Finland, thanks to the disposal of a precise impedance analyser in the laboratory I asked myself, what could R_{m} and the resistive coupling coefficient $\mathrm{k}_{\mathrm{prox}}$ be used for ? But, if I remember correctly, it was not easy to get anyone really interested in my reasoned derivations. For instance: Once I received from the friendly physics professor Dr. habil. Dr. h. c. mult. Hans-Jürgen Treder from Potsdam the following literature recommendation, intended to enrich my limited knowledge:

"BEHANDLUNG VON SCHWINGUNGSAUFGABEN

mit komplexen Amplituden und mit Vektoren", written by Prof. Dr. Hans Georg Möller, Hamburg, 2. Auflage 1936.
This book contains a lot of approximative measurements and calculations of transformers, descriptions of the Skin-Effect, eddy currents, resonance circuits, radio transmitters, three-phase asynchron motors, the theory of transmission lines and so on, but not just that treatment I have created later in my book, published in 2014.

But the hint to this book has become suddenly very important for me due to a certain personal reason, because already in the library of the university of Helsinki I found to my great surprise that all graphical representations and many mathematical formulae were already familiar to me, because I remembered an identical book, which I already during my school days had found in the bookcase of my fallen father. Unfortunately, later in West Germany never I was able to remember neither title nor author of this book. -

But I remembered exactly that in that special book of my father was not defined a resistive coupling coefficient. And I remembered also that in the last two years, before I graduated 1956 from the "Karl-MarxOberschule", I had already been looking for a formula for the maximum possible power transfer efficiency of a transformer, but had not found it in that book, forgotten in Malchin in Mecklenburg in a hurry. -
But here now is the longed-for $\eta_{\max }$-formula, derived ambitiously in Finland, 2 years after my retirement.
This formula is a function of only the 4 parameters: $Q_{1}=\frac{\omega \cdot L_{1}}{R_{1}}, Q_{2}=\frac{\omega \cdot L_{2}}{R_{2}}, k_{\text {ind }}$ and $k_{\text {prox }}$.

$$
\eta_{\max }=\frac{\mathrm{k}_{\text {ind }}{ }^{2} \cdot \mathrm{Q}_{1} \cdot \mathrm{Q}_{2}+\mathrm{k}_{\text {prox }}{ }^{2}}{\left(\sqrt{1+\mathrm{k}_{\mathrm{ind}}^{2} \cdot \mathrm{Q}_{1} \cdot \mathrm{Q}_{2}}+\sqrt{1-\mathrm{k}_{\mathrm{prox}}^{2}}\right)^{2}}
$$

$$
\text { Applied to a certain frequency } \mathrm{f}=\frac{\omega}{2 \cdot \pi}
$$

This formula is an easily to use universal function and is derived in all details in Chapter 10, which includes the determination of the optimum terminating capactance $\mathrm{C}_{\text {opt }}$ and the optimum terminating load resistance $\mathrm{R}_{\mathrm{opt}}$, both connected in parallel with the secondary coil. But if someone would not have sufficient patience to follow all the individual steps of the derivation, then the 2 verification examples with Two-Port П-Networks of Chapter 13 could also bring satisfaction.

According to my own experience, the following inequality $0<\mathrm{k}_{\text {prox }}<\mathrm{k}_{\text {ind }}<1$ applies to transformers. But $k_{\text {prox }}$ of the just mentioned 2 two-port Π-networks has a negative sign and a large absolute value: 1st example: $\mathrm{k}_{\text {prox }}=-0.999884 \quad \mathrm{k}_{\text {ind }}=0.530183$, 2nd example: $\mathrm{k}_{\text {prox }}=-0.998952 \quad \mathrm{k}_{\text {ind }}=1$ The mathematically fascinating thing is now that the formulae for $\eta_{\max }, R_{\text {opt }}$ and $C_{\text {opt }}$, derived in Chapter 10 apply exactly in all these cases, and furthermore that the $\eta_{\max }$-function gives the evidence that at increasing $k_{\text {prox }}$ also $\eta_{\text {max }}$ is increasing at whatever values the 3 other variables Q_{1}, Q_{2} and $\mathrm{k}_{\text {ind }}$ may have. A certain result derived on page 69 of my book is, that the terminating capacitance $\mathrm{C}_{\mathrm{opt}}$ is independent from any variation of the terminating load resistance. And of course, all derived formulae can be applied in an ideal way, after the raw measurement values have been balanced by means of the formulae of the Complex Relative-Error Equalization Theory.

Finally I would like to add here a third but very simple verification for the universal formula given above. Let us consider a resistor voltage divider, which can be treated as a two-port Π-network, and ask for that optimum external load resistance x, for which the ratio $\eta(x)$ of the output power to the input power becomes a maximum. This task can be solved in the well-known way by deriving η (x) as a function of the horizontal resistor R_{h} and the right-side vertical resistor R_{V} of a Π-network and of the external load resistance x : First derivation of $\eta(x)$ with respect to x, then equal to zero, and so on and so forth:
The result is: $x=R_{o p t}=R_{v} \cdot \sqrt{\frac{R_{h}}{R_{h}+R_{v}}}$ and consequently $\eta_{\max }=\frac{R_{v}{ }^{2} \cdot R_{o p t}}{\left(R_{v}+R_{o p t}\right) \cdot\left[R_{h} \cdot R_{v}+\left(R_{h}+R_{v}\right) \cdot R_{o p t}\right]}$
Together with the found $\mathrm{R}_{\mathrm{opt}}$, the ratio of the output voltage to the input voltage can be calculated and with that the just obtained power ratio $\eta(x)$. A gratifying result is, that it exactly matches the formula given above with $\mathrm{Q}_{1} \cdot \mathrm{Q}_{2}=0$ and $\mathrm{k}_{\text {prox }}=\frac{\mathrm{R}_{\mathrm{v}}}{\sqrt{\left(\mathrm{R}_{\mathrm{h}}+\mathrm{R}_{\mathrm{V}}\right) \cdot \mathrm{R}_{\mathrm{V}}}}$, derived from a comparison of both equations of the two-port Π-network with the corresponding equations of a transformer given in Chapter 1. For such a comparison it is useful to connect a negligible very small inductance L_{V} in series with R_{V}.

In Chapter 14 is described a method for the determination of short-circuit impedances without direct short-circuit measurements, but in place of that with measurements at practically used load resistors. The short-circuit impedance is then the result of an also derived algebraic extrapolation.

In Chapter 15 is given a program suitable for instance for the non-complex BASIC-system. A lot of the most important detailed calculations of this work are carried out with high precision. It includes also the calculation of the Standard Corrective Sigma according to the pages 43 and 50. Sigma is a Pythagorean Mean and means also an overall measure of all measurement deviations. And by means of a comparison of the 8 individual relative correctives with one another, any possible incorrect reading of a measurement value can be discovered.

Table of Contents

Pages

Title
Copyright
Acknowledgement, Dedication
Abstractum

A biographical Foreword, Remarks concerning the english Text
List of Names
Table of Contents
Introduction: Functionality of Electromagnetic Transformers
About Complex Amplitudes, Vectors and Transformers
The rediscovered Title and Author of a stimulating Book of my Father The Mutual Complex Interaction
A holiday accident in the Village Smithy, and Memories of My School Days About Logic, Dialectics and Mathematical Exactness
End of Second World War and Childhood
Immigration to West Germany, three work accidents
Study with the Help from the Social Office
Painful Course in Ffm, but fruitful Development in Finland Mathematical Achievements after My Retirement

Chapter 1: The Coherent Determination of the Mutual Inductive

 and the Mutual Proximity-Effect Coupling Coefficient1.1 All calculations are based on the two complex equations of the two-port network theory including the real part R_{m} of the complex coefficients $\mathrm{B}=\mathrm{C}$
1.2 The proof of the equality of the complex coefficients $\mathrm{B}=\mathrm{C}$
1.3 The definition of the complex coupling coefficient k
1.4 The coherent determination of both the mutual inductive coupling coefficient $\mathrm{k}_{\text {ind }}$ and the mutual Proximity-Effect coupling coefficient $\mathrm{k}_{\text {prox }}$
1.5 The separated coupling coefficients $\mathrm{k}_{\text {ind }}$ and $\mathrm{k}_{\text {prox }}$ as functions of the complex coupling coefficient k and the quality factors Q_{1} and Q_{2}
1.6 The real component $\mathrm{k}_{\text {real }}$ and the imaginary component k_{im} of the complex coupling coefficient k as functions of the separated coupling coefficients $k_{\text {ind }}$ and $k_{\text {prox }}$ and the quality factors Q_{1} and Q_{2}
1.7 The complex-geometrical mean G
1.8 General remarks on the convertion from rectangular Cartesian coordinates x and y to polar coordinates r and θ
Chapter 2: The Complex Relative-Error Equalization Theory, CREET
Chapter 3: Measurement Values of an Experimentation Transformer
Chapter 4: Application of the Complex Relative-Error Equalization Theory to the Measurement Values of the Experimentation Transformer
4.1 The complex-geometrical mean of both impedance ratios (primary coil and secondary coil) of the experimentation transformer of Chapter 3
4.1p Equalization of the impedance measurement values of the primary side
4.1s Equalization of the impedance measurement values of the secondary side
4.2 Comparison of the original with the equalized measurement values
4.3 The Standard Corrective Sigma $=\sigma$ of the CREET
4.4 Calculations of $\mathrm{k}_{\mathrm{g}}, \mathrm{B}_{\mathrm{e}}, \mathrm{R}_{\mathrm{me}}, \mathrm{M}_{\mathrm{e}}, \mathrm{k}_{\text {proxe }}$, $\mathrm{k}_{\text {inde }}$

Table of Contents

Chapter 5: Coherent Determination of the Mutual Inductance M and the Mutual Resistance Rm by Means of the Complex Coupling Coefficient k and the Complex-Geometrical Mean of A and D

Chapter 6: The One-Path Formulae for the Homogeneous Use of the Two OpenCircuit and the Two Short-Circuit Impedance Measurement Values for the Coherent Determination of the Mutual Inductance and Resistance
6.1 Complex derivation of non-complex formulae for M and R_{m}
6.2 Application to unequalized impedance measurement values
6.3 Application to equalized impedance measurement values

Chapter 7: The Two-Path Formulae for Parallel Coherent Calculation of Both the Mutual Inductance and the Mutual Resistance
7.1 Determination of M_{u} and R_{mu} from unequalized measurement values
7.2 Determination of M_{e} and $\mathrm{R}_{\text {me }}$ from equalized measurement values

Chapter 8: Coherent Derivation of the Complex Transformation Ratio and the Complex Coupling Coefficient by Means of Measurements of two Complex Voltage Ratios

Chapter 9: The Complex Conversion from Any Transformer to a Symmetrical Model for the Complex Derivation of the Two Leakage Impedances

Chapter 10: The Derivation of the Universal Function for the Determination of the Maximum Possible Power Transfer Efficiency $\eta_{\text {max }}$
10.1 The physical fundament for the derivation of the $\eta_{\text {max }}$-formula
10.2 The derivation of the maximum efficiency $\eta_{\max }$
10.3 An unsuccessful search for an alternative $\eta_{\text {max }}$-formula
10.4 An example for the calculation of $\mathrm{C}_{\mathrm{opt}}, \mathrm{R}_{\mathrm{opt}}$ and $\eta_{\max }$
10.5 A verification of the analytically derived $\eta_{\text {max }}$-formula

Chapter 11: The Experimental Proof of the Mutual Proximity-Effect from 1 to 200 kHz With and Without the Ferrite Core ETD 34
11.1 A simulation of the mutual Proximity-Effect by two parallel resistors
11.2 The construction of the Proximity-Effect experimentation transformer
11.3 Measurements of the Proximity-Effect experimentation transformer
11.4 Calculation results by means of the BASIC-program of Chapter 15
11.5 Frequency dependence of the muutual resistance $\mathrm{R}_{\mathrm{m}}[\Omega$]
11.6 Frequency dependence of the Proximity-Effect coupling coefficient $\mathrm{k}_{\text {prox }}$
11.7 Frequency dependence of the inductive coupling coefficient $\mathrm{k}_{\text {ind }}$

Chapter 12: An Hypothetical Assumption of a Very Large Mutual Proximity-Effect for the Purpose of Studying only

Table of Contents

Chapter 13: An Application of the $\mathrm{C}_{\mathrm{opt}}, \mathrm{R}_{\mathrm{opt}}$ and $\eta_{\max }$-Transformer Formulae to Two Complex Two-Port ח-Networks with Discrete Components
13.1 A two-port Π-network consisting of one "vertical" inductance L_{a} (input side), one "horizontal" resistance R_{h} and a parallel connection (output) of "vertical" R_{b} with L_{b}
13.2a A two-port П-network consisting of one "horizontal" inductance L and two "vertical" resistances R_{a} and R_{b}
13.2b Comparison of the results of the formulae for $\mathrm{C}_{\mathrm{opt}}, \mathrm{R}_{\mathrm{opt}}$ and $\eta_{\text {max }}$, derived in Chapter 10, with the foregoing classical calculation of the Chapter 13.2a

Chapter 14: The General Two-Path Method with Roughly Evaluated Terminating Resistances for the Coherent Determination of Both the Mutual Inductance and the Mutual Resistance (Because the derived formulae are non-complex, common scientific calculators can be used, even also a slide-rule on principle.)
14.1 The two alternative cases that the secondary coil and the primary coil are one after another terminated with roughly chosen resistances
14.2 A numerical verification of the derived non-complex formulae
14.3 Extrapolation of the input impedance at short-circuited output, \& vice versa

Chapter 15: A BASIC-Program for the SHARP Pocket Computer PC-1403H, with CREET and Coherent Utilization of Transformer Measurements
15.1 The calculation program with some additional explanations: Equalization of the Transformer Impedance Measurement Values and Calculation of the Quality Factors of the Primary- and the Secondary Coil and the Coherent Determination of Both the Mutual Inductance and the Mutual Proximity-Effect Resistance and furthermore Calculation of the Corresponding Coupling Coefficients and the Determination of the Optimum Terminating Parallel Capacitance and the optimum Parallel Load Resistance for Maximum Power Transfer Efficiency
15.2 The BASIC-program to print the calculation results
15.3 Results with the PC-1403H for the transformer of Chapter 3
15.4 Results with the PC-1403H for the two-port Π-network of Chapter 13.1
15.5 Results with the PC-1403H for the two-port Π-network of Chapter 13.2b

Appendix 1: A Numerical Verification of the CREET that the Sum of the Primary Side Related 4 Relative Correctives is Oppositely Equal to the Sum of the Squares of These

Appendix 2: A Numerical Verification of the CREET that the Sum of the Secondary Side Related 4 Relative Correctives is Oppositely Equal to the Sum of the Squares of These

Appendix 3: An Algebraical Proof of the Characteristic of the CREET, that the Arithmetical Mean is Always Oppositely Equal to the Square of the Standard Corrective of the 4 Relative Correctives of Each Side of a Transformer

Chapter 1

The Coherent Determination of the Mutual Inductive and the Mutual Proximity-Effect Coupling Coefficient

1.1 All calculations are based on the two complex equations of the two-port

 network theory including the real part R_{m} of the complex coefficients $\mathrm{B}=\mathrm{C}$:$$
\begin{aligned}
& U_{1}=\left(R_{1}+i \cdot \omega \cdot L_{1}\right) \cdot I_{1}+\left(R_{m}+i \cdot \omega \cdot M\right) \cdot I_{2}=A \cdot I_{1}+B \cdot I_{2} \\
& U_{2}=\left(R_{m}+i \cdot \omega \cdot M\right) \cdot I_{1}+\left(R_{2}+i \cdot \omega \cdot L_{2}\right) \cdot I_{2}=C \cdot I_{1}+D \cdot I_{2}
\end{aligned}
$$

On the right hand side are given the general equations of the two-port network theory, called also the four-terminal network theory, in German "Vierpoltheorie", that is applied here to electromagnetic transformers: All four coefficients A, B , C and D can be generally complex.
The direction of the two currents $\mathrm{I}_{1}[\mathrm{~A}]$ and $\mathrm{I}_{2}[\mathrm{~A}]$ is positive by definition, if they flow towards the transformer. This means: If both currents are increasing, they induce a positive voltage $\mathrm{U}_{1}[\mathrm{~V}]$ of the primary coil and a positive voltage U_{2} [V] of the secondary coil. $\omega=2 \cdot \pi \cdot f$ is the angular frequency, during $f[H z]$ is the frequency and T [sec] is the period time according to $f \cdot T=1$. All voltages and currents are assumed to be sine-shaped, but more or less phase-shifted. The complex coefficients B and C of the two-port equations are equal to each other and identical with the mutual impedance $\left(R_{m}+i \cdot \omega \cdot M\right) . \quad R_{m}$ is the real part and $i \cdot \omega \cdot M$ is the imaginary part.

$$
\begin{array}{lll}
\mathrm{R}_{1}=\text { open-circuit resistance }[\Omega], & \mathrm{L}_{1}=\text { open-circuit inductance }[\mathrm{H}] & \text { of the primary coil } \\
\mathrm{R}_{2}=\text { open-circuit resistance }[\Omega], & \mathrm{L}_{2}=\text { open-circuit inductance }[\mathrm{H}] & \text { of the secondary coil } \\
\mathrm{R}_{\mathrm{m}}=\text { mutual resistance }[\Omega], & \mathrm{M}=\text { mutual inductance }[\mathrm{H}] & \text { of mutual interaction }
\end{array}
$$

During the measurement of the open-circuit impedance $Z_{1}=\mathrm{R}_{1}+\mathrm{i} \cdot \omega \cdot \mathrm{L}_{1}$, the secondary coil is unloaded and the current $\mathrm{I}_{2}=0$. Therefore the coefficient $\mathrm{A}=\mathrm{Z}_{1}$.
During the measurement of the open-circuit impedance $Z_{2}=R_{2}+i \cdot \omega \cdot L_{2}$, the primary coil is unloaded and the current $\mathrm{I}_{1}=0$. Therefore the coefficient $\mathrm{D}=\mathrm{Z}_{2}$.

For the determination of the coefficients B and C are needed additionally the measurements of the short-circuit impedances $Z_{1 \text { sc }}$ and $Z_{2 s c}$. For the short-circuited secondary coil is $U_{2}=0$, and it follows from the second two-port equation:

$$
\begin{array}{ll}
I_{2}=\frac{-C}{D} \cdot I_{1}, & \text { and insertion into the first two-port equation yields: } \\
\frac{B \cdot C}{D}=A-Z_{1 s c} & \text { B } \cdot C=D \cdot\left(A-Z_{1 s c}\right)=D \cdot A \cdot\left(1-\frac{Z_{1 s c}}{A}\right)=A \cdot D \cdot\left(1-\frac{Z_{1 s c}}{Z_{1}}\right)
\end{array}
$$

Analogously is valid also:

$$
\frac{\mathrm{C} \cdot \mathrm{~B}}{\mathrm{~A}}=\mathrm{D}-\mathrm{Z}_{2 \mathrm{sc}} \quad \mathrm{C} \cdot \mathrm{~B}=\mathrm{A} \cdot\left(\mathrm{D}-\mathrm{Z}_{2 \mathrm{sc}}\right)=\mathrm{A} \cdot \mathrm{D} \cdot\left(1-\frac{\mathrm{Z}_{2 \mathrm{sc}}}{\mathrm{D}}\right)=\mathrm{A} \cdot \mathrm{D} \cdot\left(1-\frac{\mathrm{Z}_{2 \mathrm{sc}}}{\mathrm{Z}_{2}}\right)
$$

Because of the equality of $\mathrm{B} \cdot \mathrm{C}=\mathrm{C} \cdot \mathrm{B}$, it follows exactly the proportionality equation:

$$
\frac{\mathrm{Z}_{1 \mathrm{sc}}}{\mathrm{Z}_{1}}=\frac{\mathrm{Z}_{2 \mathrm{sc}}}{\mathrm{Z}_{2}}
$$

1.4 The Coherent determination of both the mutual inductive coupling coefficient $\mathrm{k}_{\text {ind }}$ and the mutual Proximity-Effect coupling coefficient $\mathrm{k}_{\text {prox }}$:

As a conclusion from the first two pages of this Chapter 1, it can be written:

$$
\mathrm{B}= \pm \sqrt{\mathrm{Z}_{1} \cdot \mathrm{Z}_{2} \cdot\left(1-\frac{\mathrm{Z}_{1 \mathrm{sc}}}{\mathrm{Z}_{1}}\right)} \quad \text { respectively } \quad \mathrm{C}= \pm \sqrt{\mathrm{Z}_{1} \cdot \mathrm{Z}_{2} \cdot\left(1-\frac{\mathrm{Z}_{2 \mathrm{sc}}}{\mathrm{Z}_{2}}\right)}
$$

And again arises the question concerning the sign of the square root. But now it will be solved by means of polar coordinates. In order to decompose B , the square root has to be squared at first:

$$
\begin{gathered}
B^{2}=\left(R_{2}+i \cdot \omega \cdot L_{2}\right) \cdot\left[\left(R_{1}+i \cdot \omega \cdot L_{1}\right)-\left(R_{1 s c}+i \cdot \omega \cdot L_{1 s c}\right)\right] \\
B^{2}=\left(R_{2}+i \cdot \omega \cdot L_{2}\right) \cdot\left[\left(R_{1}-R_{1 s c}\right)+i \cdot \omega \cdot\left(L_{1}-L_{1 s c}\right)\right] \\
B^{2}=\left[R_{2} \cdot\left(R_{1}-R_{1 s c}\right)-\omega \cdot L_{2} \cdot \omega \cdot\left(L_{1}-L_{1 s c}\right)\right]+i \cdot\left[\omega \cdot L_{2} \cdot\left(R_{1}-R_{1 s c}\right)+R_{2} \cdot \omega \cdot\left(L_{1}-L_{1 s c}\right)\right] \\
a=R_{2} \cdot\left(R_{1}-R_{1 s c}\right)-\omega \cdot L_{2} \cdot \omega \cdot\left(L_{1}-L_{1 s c}\right) \quad b=\omega \cdot L_{2} \cdot\left(R_{1}-R_{1 s c}\right)+R_{2} \cdot \omega \cdot\left(L_{1}-L_{1 s c}\right) \\
\left|B^{2}\right|=\sqrt{a^{2}+b^{2}} \quad \beta=\operatorname{atan}\left(\frac{b}{a}\right)+(a<0) \cdot(b>0) \cdot \pi+(a<0) \cdot(b<0) \cdot \pi+(a>0) \cdot(b<0) \cdot 2 \cdot \pi
\end{gathered}
$$

If for instance a would be positive, but b negative, then the complex vector B^{2} is situated in the fourth quadrant, and $2 \cdot \pi$ is added to the arcus tangens atan.
The square root of a power function is extracted by dividing its exponent by 2 .

$$
\begin{aligned}
& B^{2}=\left|B^{2}\right| \cdot e^{i} \cdot \beta \quad \phi=\frac{\beta}{2} \quad B=B_{r}+i \cdot B_{i}=\sqrt{\left|B^{2}\right|} \cdot e^{i \cdot \phi}=\sqrt{\left|B^{2}\right|} \cdot(\cos (\phi)+i \cdot \sin (\phi)) \\
& B_{r}=\sqrt{\left|B^{2}\right|} \cdot \cos (\phi)=\sqrt[4]{a^{2}+b^{2}} \cdot \cos (\phi) \quad B_{i}=\sqrt{\left|B^{2}\right|} \cdot \sin (\phi)=\sqrt[4]{a^{2}+b^{2}} \cdot \sin (\phi)
\end{aligned}
$$

Since the calculation of B is based on measurements of the impedance of the primary coil at short-circuited secondary coil, the subscript 1 may be used for a more precise identification of the derived R_{m} and M , and furthermore also for $\mathrm{k}_{\text {prox }}$ and $\mathrm{k}_{\text {ind }}$ as well:

$$
\left.\begin{array}{cc}
B=R_{m 1}+i \cdot \omega \cdot M_{1} & \quad R_{m 1}=\operatorname{Re}(B)=B_{r}
\end{array} \quad \omega \cdot M_{1}=\operatorname{Im}(B)=B_{i}\right)
$$

The sign of the values of $\mathrm{R}_{\mathrm{m} 1}$ and M_{1} depends only upon the angle ϕ of the trigonometric functions $\cos (\phi)$ and $\sin (\phi)$ respectively. The fourth power root is related to the square $\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$ of the magnitude of the vector B.
The same kind of calculation can be carried out with respect to measurements of the impedance of the secondary coil at short-circuited primary coil. Only the subscripts 1 and 2 have to be interchanged, and B, ϕ, a and b have to be replaced by other letters, for instance $\mathrm{C}, \psi, \mathrm{g}$ and h .

$$
\begin{gathered}
C^{2}=\left(R_{1}+i \cdot \omega \cdot L_{1}\right) \cdot\left[\left(\mathrm{R}_{2}+\mathrm{i} \cdot \omega \cdot \mathrm{~L}_{2}\right)-\left(\mathrm{R}_{2 \mathrm{sc}}+\mathrm{i} \cdot \omega \cdot \mathrm{~L}_{2 \mathrm{sc}}\right)\right] \\
\mathrm{C}^{2}=\left(\mathrm{R}_{1}+\mathrm{i} \cdot \omega \cdot \mathrm{~L}_{1}\right) \cdot\left[\left(\mathrm{R}_{2}-\mathrm{R}_{2 \mathrm{sc}}\right)+\mathrm{i} \cdot \omega \cdot\left(\mathrm{~L}_{2}-\mathrm{L}_{2 \mathrm{sc}}\right)\right] \\
\mathrm{C}^{2}=\left[\mathrm{R}_{1} \cdot\left(\mathrm{R}_{2}-\mathrm{R}_{2 \mathrm{sc}}\right)-\omega \cdot \mathrm{L}_{1} \cdot \omega \cdot\left(\mathrm{~L}_{2}-\mathrm{L}_{2 \mathrm{sc}}\right)\right]+\mathrm{i} \cdot\left[\omega \cdot \mathrm{~L}_{1} \cdot\left(\mathrm{R}_{2}-\mathrm{R}_{2 \mathrm{sc}}\right)+\mathrm{R}_{1} \cdot \omega \cdot\left(\mathrm{~L}_{2}-\mathrm{L}_{2 \mathrm{sc}}\right)\right] \\
\mathrm{g}=\mathrm{R}_{1} \cdot\left(\mathrm{R}_{2}-\mathrm{R}_{2 \mathrm{sc}}\right)-\omega \cdot \mathrm{L}_{1} \cdot \omega \cdot\left(\mathrm{~L}_{2}-\mathrm{L}_{2 \mathrm{sc}}\right) \quad \mathrm{h}=\omega \cdot \mathrm{L}_{1} \cdot\left(\mathrm{R}_{2}-\mathrm{R}_{2 \mathrm{sc}}\right)+\mathrm{R}_{1} \cdot \omega \cdot\left(\mathrm{~L}_{2}-\mathrm{L}_{2 \mathrm{sc}}\right) \\
\left|\mathrm{C}^{2}\right|=\sqrt{\mathrm{g}^{2}+\mathrm{h}^{2}} \quad \gamma=\operatorname{atan}\left(\frac{\mathrm{h}}{\mathrm{~g}}\right)+(\mathrm{g}<0) \cdot(\mathrm{h}>0) \cdot \pi+(\mathrm{g}<0) \cdot(\mathrm{h}<0) \cdot \pi+(\mathrm{g}>0) \cdot(\mathrm{h}<0) \cdot 2 \cdot \pi
\end{gathered}
$$

If for instance g would be positive, but h negative, then the complex vector C^{2} is situated in the fourth quadrant, and $2 \cdot \pi$ is added to the arcus tangens atan. The square root of a power function is extracted by dividing its exponent by 2 .

$$
\begin{gathered}
C^{2}=\left|C^{2}\right| \cdot e^{\mathrm{i} \cdot \gamma} \quad \psi=\frac{\gamma}{2} \quad C=C_{r}+i \cdot C_{i}=\sqrt{\left|C^{2}\right|} \cdot \mathrm{e}^{i} \cdot \psi=\sqrt{\left|C^{2}\right|} \cdot(\cos (\psi)+\mathrm{i} \cdot \sin (\psi)) \\
C_{r}=\sqrt{\left|C^{2}\right|} \cdot \cos (\psi)=\sqrt[4]{g^{2}+\mathrm{h}^{2}} \cdot \cos (\psi) \quad C_{i}=\sqrt{\left|C^{2}\right|} \cdot \sin (\psi)=\sqrt[4]{g^{2}+h^{2}} \cdot \sin (\psi)
\end{gathered}
$$

Since the calculation of C is based on measurements of the impedance of the secondary coil at short-circuited primary coil, the subscript 2 may be used for a more precise identification of the derived R_{m} and M , and furthermore also for $\mathrm{k}_{\text {prox }}$ and $\mathrm{k}_{\text {ind }}$ as well:

$$
\left.\begin{array}{cc}
C=R_{m}+\mathrm{i} \cdot \omega \cdot \mathrm{M}_{2} & \quad \mathrm{R}_{\mathrm{m} 2}=\operatorname{Re}(\mathrm{C})=\mathrm{C}_{\mathrm{r}}
\end{array} \quad \omega \cdot \mathrm{M}_{2}=\operatorname{Im}(\mathrm{C})=\mathrm{C}_{\mathrm{i}}\right)
$$

The sign of the values of $\mathrm{R}_{\mathrm{m} 2}$ and M_{2} depends only upon the angle ψ of the trigonometric functions $\cos (\psi)$ and $\sin (\psi)$ respectively. The fourth power root is related to the square $\left(g^{2}+h^{2}\right)$ of the magnitude of the vector C . Theoretically the corresponding results of the two calculations should be equal to each other, because of $\mathrm{C}=\mathrm{B}$. But accidental measurement errors as small deviations from the true values of the short-circuit- and the open-circuit impedance values are always unavoidable.

In other Chapters of this work are described also other methods without the means of polar coordinates. Such methods can be used, if the correct sign of the values of the mutual resistance R_{m} and the mutual inductance M are clear already a priori, as it is the normal case in the application of electromagnetic transformers, enough below of their own resonance frequencies. But if other two-port networks are considered, then polar coordinates have to be applied in such a way as just shown here.

Finally a physical hint could be given still that really R_{m}, and not M alone, is an existing parameter of the mutual property of an electromagnetic transformer:
If namely for the impedance measurements an external inductor and / or an external resistor would be connected in series with the primary- or the secondary coil - or two inductors and / or two resistors, each of both in series with one of both transformer coils - in every case the mutual impedance would stay absolutely uneffected. But, of course, the overall coupling coefficient is decreased then.

Chapter 3

Measurement Values of an Experimentation Transformer

The following complex measurement values are small signal values and are measured at one selfwound and not necessarily small transformer, provided with the Siemens ferrite core of the material N 41 and the size EE 21-9-5 with internal air gap of $120 \mu \mathrm{~m}$, $\mathrm{AL}=200 \mathrm{nH}$ per turn square. The coilformer is provided with two equal sections, the one is for the primary coil, the other for the secondary coil. Between both coils is a partition wall of measured 0.91 mm . The width of each section is 4.27 mm . The winding bottom has a measured square of $7.48 \mathrm{~mm} \times 7.48 \mathrm{~mm}$. The primary coil consists of 400 turns of 0.16 EJF2 double enamelled copper wire and the the secondary coil consists of 70 turns of 0.40 EJF2 double enamelled copper wire. Concerning the published AL-value the inductances should be at least approximately:

$$
\mathrm{N}_{1}:=400 \quad \mathrm{~L}_{1}=200 \cdot \mathrm{nH} \cdot 400^{2}=32 \cdot \mathrm{mH} \quad \mathrm{~N}_{2}:=70 \quad \mathrm{~L}_{2}=200 \cdot \mathrm{nH} \cdot 70^{2}=980 \cdot \mu \mathrm{H}
$$

The actual values can be obtained only be means of measurements with an impedance analyser: The technical term "open-circuit" means that during the measurement of the one of both coils, the at this moment other coil is not connected to any load. Therefore in this case no additional subscript is used. But the technical term "short-circuit" [subscript sc] means that during the measurement of the one of both coils, the at this moment other coil is short-circuited.

Used measurement frequency: $\quad \mathrm{f}:=60 \cdot \mathrm{kHz} \quad \omega:=2 \cdot \pi \cdot \mathrm{f} \quad \omega=3.769911 \times 10^{5} \mathrm{~s}^{-1}$

Measured no-load and short-circuited resistances and inductances of the primary coil:

$$
\begin{array}{ll}
\mathrm{R}_{1}:=45 \cdot \Omega & \mathrm{R}_{1 \mathrm{sc}}:=72 \cdot \Omega \\
\mathrm{~L}_{1}:=32.5 \cdot \mathrm{mH} & \mathrm{~L}_{1 \mathrm{sc}}:=3.84 \cdot \mathrm{mH}
\end{array}
$$

Measured no-load and short-circuited resistances and inductances of the secondary coil:

$$
\begin{array}{ll}
\mathrm{R}_{2}:=2.5 \cdot \Omega & \mathrm{R}_{2 \mathrm{sc}}:=2.34 \cdot \Omega \\
\mathrm{~L}_{2}:=1006 \cdot \mu \mathrm{H} & \mathrm{~L}_{2 \mathrm{sc}}:=118 \cdot \mu \mathrm{H}
\end{array}
$$

The index "sc" stands for short-circuited.

Application of the Formulae derived in Chapter 1.4 to the measured Values of an Experimentation Transformer of the previous Chapter 3, Calculation with Polar Coordinates:

First Path: The primary coil is measured.

$$
\begin{array}{ll}
\mathrm{a}:=\mathrm{R}_{2} \cdot\left(\mathrm{R}_{1}-\mathrm{R}_{1 \mathrm{sc}}\right)-\omega \cdot \mathrm{L}_{2} \cdot \omega \cdot\left(\mathrm{~L}_{1}-\mathrm{L}_{1 \mathrm{sc}}\right) & \mathrm{b}:=\omega \cdot \mathrm{L}_{2} \cdot\left(\mathrm{R}_{1}-\mathrm{R}_{1 \mathrm{sc}}\right)+\mathrm{R}_{2} \cdot \omega \cdot\left(\mathrm{~L}_{1}-\mathrm{L}_{1 \mathrm{sc}}\right) \\
\mathrm{a}=-4.097732 \times 10^{6} \Omega \cdot \Omega & \mathrm{~b}=1.677158 \times 10^{4} \Omega \cdot \Omega
\end{array}
$$

$$
\begin{gathered}
\beta:=\operatorname{atan}\left(\frac{b}{a}\right)+(a<0) \cdot(b>0) \cdot \pi+(a<0) \cdot(b<0) \cdot \pi+(a>0) \cdot(b<0) \cdot 2 \cdot \pi \\
\beta=3.137500 \mathrm{rad}
\end{gathered}
$$

$$
\phi:=\frac{\beta}{2} \quad \mathrm{~B}_{\mathrm{r}}:=\sqrt[4]{\mathrm{a}^{2}+\mathrm{b}^{2}} \cdot \cos (\phi) \quad \mathrm{B}_{\mathrm{i}}:=\sqrt[4]{\mathrm{a}^{2}+\mathrm{b}^{2}} \cdot \sin (\phi)
$$

$$
\mathrm{R}_{\mathrm{m} 1}:=\mathrm{B}_{\mathrm{r}} \quad \mathrm{R}_{\mathrm{m} 1}=4.142584 \Omega \quad \mathrm{M}_{1}:=\frac{\mathrm{B}_{\mathrm{i}}}{\omega} \quad \mathrm{M}_{1}=5.369595 \mathrm{mH}
$$

$$
\mathrm{k}_{\text {prox } 1}:=\frac{\mathrm{R}_{\mathrm{m} 1}}{\sqrt{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}} \quad \begin{gathered}
\mathrm{k}_{\text {prox1 }}=0.390567 \\
==============
\end{gathered} \quad \mathrm{k}_{\text {ind1 }}:=\frac{\mathrm{M}_{1}}{\sqrt{\mathrm{~L}_{1} \cdot \mathrm{~L}_{2}}} \quad \begin{aligned}
& \mathrm{k}_{\text {ind1 }}=============
\end{aligned}
$$

Second Path: The secondary coil is measured.

$$
\begin{aligned}
& \mathrm{g}:=\mathrm{R}_{1} \cdot\left(\mathrm{R}_{2}-\mathrm{R}_{2 \mathrm{sc}}\right)-\omega \cdot \mathrm{L}_{1} \cdot \omega \cdot\left(\mathrm{~L}_{2}-\mathrm{L}_{2 \mathrm{sc}}\right) \\
& g=-4.101642 \times 10^{6} \Omega \cdot \Omega \\
& h:=\omega \cdot L_{1} \cdot\left(R_{2}-R_{2 s c}\right)+R_{1} \cdot \omega \cdot\left(L_{2}-L_{2 s c}\right) \\
& \mathrm{h}=1.702492 \times 10^{4} \Omega \cdot \Omega \\
& \gamma:=\operatorname{atan}\left(\frac{\mathrm{h}}{\mathrm{~g}}\right)+(\mathrm{g}<0) \cdot(\mathrm{h}>0) \cdot \pi+(\mathrm{g}<0) \cdot(\mathrm{h}<0) \cdot \pi+(\mathrm{g}>0) \cdot(\mathrm{h}<0) \cdot 2 \cdot \pi \\
& \gamma=3.137442 \mathrm{rad} \quad \gamma=179.762181 \mathrm{Grad} \\
& \psi:=\frac{\gamma}{2} \quad C_{r}:=\sqrt[4]{g^{2}+\mathrm{h}^{2}} \cdot \cos (\psi) \quad C_{i}:=\sqrt[4]{\mathrm{g}^{2}+\mathrm{h}^{2}} \cdot \sin (\psi) \\
& \mathrm{R}_{\mathrm{m} 2}:=\mathrm{C}_{\mathrm{r}} \quad \mathrm{R}_{\mathrm{m} 2}=4.203153 \Omega \quad \mathrm{M}_{2}:=\frac{\mathrm{C}_{\mathrm{i}}}{\omega} \quad \mathrm{M}_{2}=5.372157 \mathrm{mH} \\
& \mathrm{k}_{\text {prox2 }}:=\frac{\mathrm{R}_{\mathrm{m} 2}}{\sqrt{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}} \quad \begin{array}{l}
\mathrm{k}_{\mathrm{prox} 2}=0.396277 \\
===============
\end{array} \quad \mathrm{k}_{\text {ind2 }}:=\frac{\mathrm{M}_{2}}{\sqrt{\mathrm{~L}_{1} \cdot \mathrm{~L}_{2}}} \quad \begin{array}{l}
\mathrm{k}_{\text {ind2 }}=0.939524 \\
=============
\end{array}
\end{aligned}
$$

Chapter 7

The Two-Path Formulae for Parallel Coherent Calculation of both the Mutual Inductance and the Mutual Resistance

7.1 Determination of M_{u} and $R_{m u}$ from unequalized measurement values:

The following formulae are derived from the four-terminal equations of Chapter 1 with respect to the open-circuit and short-circuit measurements and the application of the solution of the mixed quadratic equation $x^{2}+p \cdot x+q=0$. The sequence of the individual formulae given here is developed for the straightforward calculation process. If instead of short-circuit measurements the output of a transformer is loaded with certain external resistances $R_{\mathrm{ex} 1}$ and $R_{\mathrm{ex} 2}$ respectively, please see Chapter 14.

$$
\begin{array}{ccc}
\mathrm{Q}_{1}:=\frac{\omega \cdot \mathrm{L}_{1}}{\mathrm{R}_{1}} & \mathrm{Q}_{1}=272.271363 & \mathrm{Q}_{2}:=\frac{\omega \cdot \mathrm{L}_{2}}{\mathrm{R}_{2}}
\end{array} \mathrm{Q}_{2}=151.701226
$$

First path:

$$
\begin{array}{ccr}
\xi_{1}:=\left(\mathrm{R}_{1}-\mathrm{R}_{1 \mathrm{sc}}\right) \cdot \mathrm{S}_{2} & \xi_{2}:=\left(\mathrm{R}_{2}-\mathrm{R}_{2 \mathrm{sc}}\right) \cdot \mathrm{S}_{1} \\
\eta_{1}:=\omega \cdot\left(\mathrm{L}_{1}-\mathrm{L}_{1 \mathrm{sc}}\right) \cdot \mathrm{S}_{2} & \eta_{2}:=\omega \cdot\left(\mathrm{L}_{2}-\mathrm{L}_{2 \mathrm{sc}}\right) \cdot \mathrm{S}_{1} \\
\Lambda_{1}:=\frac{\eta_{1}}{\mathrm{R}_{2}}-\frac{\xi_{1}}{\omega \cdot \mathrm{~L}_{2}} & \Lambda_{2}:=\frac{\eta_{2}}{\mathrm{R}_{1}}-\frac{\xi_{2}}{\omega \cdot \mathrm{~L}_{1}} \\
\Pi_{1}:=\sqrt{\frac{1}{\mathrm{R}_{2}^{2}}+\frac{1}{\omega^{2} \cdot \mathrm{~L}_{2}{ }^{2}} \cdot \sqrt{\xi_{1}^{2}+\eta_{1}^{2}}} & \Pi_{2}:=\sqrt{\frac{1}{\mathrm{R}_{1}^{2}}+\frac{1}{\omega^{2} \cdot \mathrm{~L}_{1}{ }^{2}} \cdot \sqrt{\xi_{2}^{2}+\eta_{2}^{2}}} \\
\Gamma_{1}:=\frac{\Lambda_{1}+\Pi_{1}}{2} & \Gamma_{2}:=\frac{\Lambda_{2}+\Pi_{2}}{2}
\end{array}
$$

Second path:

$\mathrm{M}_{1}:=\frac{1}{\omega} \cdot \sqrt{\frac{\Gamma_{1}}{\mathrm{H}_{2}}} \quad \mathrm{R}_{\mathrm{m} 1}:=\frac{\frac{\xi_{1}}{\mathrm{R}_{2}}+\frac{\eta_{1}}{\omega \cdot \mathrm{~L}_{2}}}{2 \cdot \mathrm{H}_{2} \cdot \omega \cdot \mathrm{M}_{1}}$
$\mathrm{M}_{2}:=\frac{1}{\omega} \cdot \sqrt{\frac{\Gamma_{2}}{\mathrm{H}_{1}}}$
$\mathrm{R}_{\mathrm{m} 2}:=\frac{\frac{\xi_{2}}{\mathrm{R}_{1}}+\frac{\eta_{2}}{\omega \cdot \mathrm{~L}_{1}}}{2 \cdot \mathrm{H}_{1} \cdot \omega \cdot \mathrm{M}_{2}}$
$\mathrm{M}_{1}=5.369595 \mathrm{mH} \quad \mathrm{R}_{\mathrm{m} 1}=4.142584 \Omega$
$\mathrm{M}_{2}=5.372157 \mathrm{mH} \quad \mathrm{R}_{\mathrm{m} 2}=4.203153 \Omega$

As a first proof, the values of both pairs of the results are rather equal to each other:

$$
2 \cdot\left(\frac{\mathrm{M}_{1}-\mathrm{M}_{2}}{\mathrm{M}_{1}+\mathrm{M}_{2}}\right)=-4.769752 \times 10^{-4} \quad 2 \cdot\left(\frac{\mathrm{R}_{\mathrm{m} 1}-\mathrm{R}_{\mathrm{m} 2}}{\mathrm{R}_{\mathrm{m} 1}+\mathrm{R}_{\mathrm{m} 2}}\right)=-0.014515
$$

However, the relative difference between both R_{m}-results is here about 30 times larger than the relative difference of the M -results. The cause is surely that the resistances of the measured short-circuit and open-circuit impedances are much smaller than the reactances and therefore relatively less accurate. But if at the beginning the fine Complex Relative-Error Equalization Theory, the CREET of Chapter 2, would have been applied, then the differences between Path One and Path Two would be zero. A detailed application of the CREET is given in my earlier report of 06 March 2022 about "Maximization of the Efficiency of a Transformer, solely by Optimizing its Load Impedance" But here in the following, the calculation is continued with the arithmetical mean values:

$$
\begin{array}{cccc}
\mathrm{R}_{\mathrm{m}}:=\frac{\mathrm{R}_{\mathrm{m} 1}+\mathrm{R}_{\mathrm{m} 2}}{2} & \mathrm{R}_{\mathrm{m}}=4.172869 \Omega \\
\left(\mathrm{R}_{\mathrm{me}}=4.179597 \cdot \Omega\right)
\end{array} \quad \mathrm{M}:=\frac{\mathrm{M}_{1}+\mathrm{M}_{2}}{2} \quad \begin{gathered}
\mathrm{M}=5.370876 \mathrm{mH} \\
\left(\mathrm{M}_{\mathrm{e}}=5.370868 \cdot \mathrm{mH}\right) \\
\mathrm{k}_{\text {prox }}:=\frac{\mathrm{R}_{\mathrm{m}}}{\sqrt{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}}
\end{gathered} \begin{gathered}
\mathrm{k}_{\text {prox }}=0.393422 \\
\left(\mathrm{k}_{\text {proxe }}=0.394076\right)
\end{gathered} \quad \mathrm{k}_{\text {ind }}:=\frac{\mathrm{M}}{\sqrt{\mathrm{~L}_{1} \cdot \mathrm{~L}_{2}}} \quad \begin{gathered}
\mathrm{k}_{\text {ind }}=0.939300 \\
\left(\mathrm{k}_{\text {inde }}=0.939301\right)
\end{gathered}
$$

In order to demonstrate the result of my calculations, the following three formulae are copied from Chapter 10.4 , page 74 , of my book from 2014, but here calculated from unequalized measurement values, it means without the CREET.

The optimum terminating capacitance is:
$C_{\text {opt }}:=\frac{1-k_{\text {ind }} \cdot k_{\text {prox }} \cdot \sqrt{\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}}}{\left(\mathrm{k}_{\text {ind }} \cdot \sqrt{\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}}-\mathrm{k}_{\text {prox }}\right)^{2}+\left(1-\mathrm{k}_{\text {prox }}{ }^{2}\right) \cdot\left(1+\frac{1}{\mathrm{Q}_{2}{ }^{2}}\right)} \cdot \frac{1}{\omega^{2} \cdot \mathrm{~L}_{2}}$
$\mathrm{C}_{\mathrm{opt}}=2.216370 \mathrm{nF}$

($\mathrm{C}_{\text {opte }}=2.208199 \mathrm{nF}$)

For a comparison, the results written in brackets and additionally market with the subscript "e" originate from my book mentioned on the title page of this 12 pages. The subscript "e" stands for equalized.

The optimum terminating resistance is:

$$
\mathrm{R}_{\mathrm{opt}}:=\frac{\left(\mathrm{k}_{\text {ind }} \cdot \sqrt{\left.\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}-\mathrm{k}_{\text {prox }}\right)^{2}+\left(1-\mathrm{k}_{\text {prox }}^{2}\right) \cdot\left(1+\frac{1}{\mathrm{Q}_{2}^{2}}\right)}\right.}{\sqrt{\left(1+\mathrm{k}_{\mathrm{ind}}^{2} \cdot \mathrm{Q}_{1} \cdot \mathrm{Q}_{2}\right) \cdot\left(1-\mathrm{k}_{\text {prox }}^{2}\right)}} \cdot \mathrm{Q}_{2} \cdot \omega \cdot \mathrm{~L}_{2}
$$

$$
\mathrm{R}_{\mathrm{opt}}=0.522340 \mathrm{k} \Omega
$$

$$
==============
$$

$$
\left(\mathrm{R}_{\mathrm{opte}}=0.521067 \cdot \mathrm{k} \Omega\right)
$$

The maximum possible power transfer efficiency is:

$$
\eta_{\max }:=\frac{\mathrm{k}_{\mathrm{ind}}{ }^{2} \cdot \mathrm{Q}_{1} \cdot \mathrm{Q}_{2}+\mathrm{k}_{\mathrm{prox}}^{2}}{\left(\sqrt{1+\mathrm{k}_{\mathrm{ind}}^{2} \cdot \mathrm{Q}_{1} \cdot \mathrm{Q}_{2}}+\sqrt{1-\mathrm{k}_{\mathrm{prox}}{ }^{2}}\right)^{2}}
$$

$$
\begin{aligned}
& \eta_{\max }=0.990414 \\
& ==============
\end{aligned}
$$

$$
\left(\eta_{\operatorname{maxe}}=0.990418\right)
$$

