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                                Abstractum     
                   with foundation of the two separate coupling coefficients  kind  and  kprox : 

Assuming a loss-free transformer, of which primary and secondary coil have the same inductances
at not neccessarily identical turn numbers, the coupling coefficient is equal to the ratio of the no-load
output voltage to the input voltage. But at different inductances we have to consider the transformer
not only in the forward direction but also in the backward direction, and finally we have to form the

geometrical mean of the inductances. Then according to page 22 of  Chapter 1 is :

                                   kind  = 
C

A

B

D
⋅   = 

M

L1

M

L2
⋅   =  

M

L1 L2⋅
                  =  ki , a shortened notation only.

Analogously, the following holds for a pure resistive four-terminal network, called also two-port network:

                                 kprox  = 
C

A

B

D
⋅   = 

Rm

R1

Rm

R2
⋅   =  

Rm

R1 R2⋅
               =  kr , a shortened notation only.

These both coupling coefficients are real numbers. But if we accept and combine the coherent character
of both equations of the four trminal network, we obtain the complex coupling coefficient:

                      k  = 
C

A

B

D
⋅   = 

Rm j ω⋅ M⋅+( )
R1 j ω⋅ L1⋅+( )

Rm j ω⋅ M⋅+( )
R2 j ω⋅ L2⋅+( )

⋅   =  
Rm j ω⋅ M⋅+

R1 j ω⋅ L1⋅+( ) R2 j ω⋅ L2⋅+( )⋅
       

Here I would like to cofess that during all my own work in the development laboratory including the opti-
mization of the efficiency of small transformers, it was always quite common to use the directly measured
values of   L1 , R1 , L2 , R2   and both short circuit inductances, from which the inductive coupling coef-

ficient has been approximately calculated according to     1
L1sc

L1
−   = 1

L2sc

L2
−         ( sc = short circuit )

But after the laboratory was equipped with an impedance analyser, I could determine all 4 complex 
coefficients of a four terminal network, based on the complex open-circuit and short-circuit impedance

measurement values. That calculation I derived mathematically and is described here in  Chapter 7.

But already in the middle of  Chapter 1  I applied polar coordinates. Other versions are from a later
date after my retirement: Furthermore I derived formulae for the separate  kind  and  kprox  as functions

of   Q1 , Q2   and the complex coupling coefficient   k  =  kreal i kim⋅+  ,  and vice verta.  In  Chapter 5 ,

starting from unbalanced measurement values, but forming the complex geometric mean of  A  and  D , 

I applied polar coordinates, and compared results with previous calculations, balanced via the created

Complex Relative-Error Equalization Theory, the CREET of  Chapter 2 .  But in  Chapter 6  I began
the calculation of   Rm   and  M    with the complex geometrical mean of both short circuit impedances.    

     In Germany I had certainly derived already formulae for the mutual resistance  Rm   and the mutual 

inductance  M  .  And finally later in Finland, thanks to the disposal of a precise impedance analyser in 

the laboratory I asked myself, what could  Rm   and  the resistive coupling coefficient  kprox   be used for ? 

But, if I remember correctly, it was not easy to get anyone really interested in my reasoned derivations. -
For instance: Once I received from the friendly physics professor Dr. habil. Dr. h. c. mult. Hans-Jürgen
Treder from Potsdam the following literature recommendation, intended to enrich my limited knowledge:

"BEHANDLUNG VON SCHWINGUNGSAUFGABEN 

  mit komplexen Amplituden und mit Vektoren",            written by Prof. Dr. Hans Georg Möller,
                                                                                                             Hamburg, 2. Auflage 1936.
This book contains a lot of approximative measurements and calculations of transformers, descriptions of the
Skin-Effect, eddy currents, resonance circuits, radio transmitters, three-phase asynchron motors, the theory
of transmission lines and so on, but not just that treatment I have created later in my book, published in 2014.
     But the hint to this book has become suddenly very important for me due to a certain personal reason, 
because already in the library of the university of Helsinki I found to my great surprise that all graphical
representations and many mathematical formulae were already familiar to me, because I remembered
an identical book, which I already during my school days had found in the bookcase of my fallen father.
Unfortunately, later in West Germany never I was able to remember neither title nor author of this book. -
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But I remembered exactly that in that special book of my father was not defined a resistive coupling
coefficient. And I remembered also that in the last two years, before I graduated 1956 from the "Karl-Marx-
Oberschule", I had already been looking for a formula for the maximum possible power transfer efficiency
of a transformer, but had not found it in that book, forgotten in Malchin in Mecklenburg in a hurry. - 

But here now is the longed-for  ηmax -formula, derived ambitiously in Finland, 2 years after my retirement.

This formula is a function of only the  4  parameters:  Q1  =  
ω L1⋅

R1
  ,  Q2  =  

ω L2⋅

R2
  ,   kind   and  kprox  . 

   ηmax  =  
kind

2
Q1⋅ Q2⋅ kprox

2+

1 kind
2

Q1⋅ Q2⋅+ 1 kprox
2−+





2
  Applied to a certain frequency  f  = 

ω

2 π⋅
 

This formula is an easily to use universal function and is derived in all details in Chapter 10, 
which includes the determination of the optimum terminating capactance  Copt   and the opti-

mum terminating load resistance  Ropt ,  both connected in parallel with the secondary coil. 

But if someone would not have sufficient patience to follow all the individual steps of the derivation, then

the 2 verification examples with  Two-Port Π-Networks of  Chapter 13  could also bring satisfaction.

According to my own experience, the following inequality  0  <  kprox  <  kind  <  1  applies to transformers.

But  kprox   of the just mentioned 2  two-port Π-networks has a negative sign and a large absolute value:

1st example:  kprox  = 0.999884−      kind  = 0.530183 ,      2nd example:   kprox  = 0.998952−       kind  = 1

The mathematically fascinating thing is now that the formulae for   ηmax , Ropt  and  Copt , derived in

Chapter 10  apply exactly in all these cases, and furthermore that the ηmax -function gives the evidence

that at increasing   kprox    also   ηmax    is increasing at whatever values the 3 other variables   Q1 , Q2 

and   kind    may have.   A certain result derived on page 69 of my book is, that the terminating

capacitance   Copt    is independent from any variation of the terminating load resistance. 

And of course, all derived formulae can be applied in an ideal way, after the raw measurement values 

have been balanced by means of the formulae of the Complex Relative-Error Equalization Theory.

    Finally I would like to add here a third but very simple verification for the universal formula given 

above. Let us consider a resistor voltage divider, which can be treated as a  two-port Π-network, and

ask for that optimum external load resistance  x , for which the ratio  η x( )  of the output power to the

input power becomes a maximum. This task can be solved in the well-known way by deriving  η x( )  as a

function of the horizontal resistor Rh  and the right-side vertical resistor Rv  of a  Π-network and of the external

load resistance  x  : First derivation of  η x( )   with respect to   x ,  then equal to zero, and so on and so forth: 

The result is: x  = Ropt  = Rv

Rh

Rh Rv+
⋅    and consequently   ηmax  = 

Rv
2

Ropt⋅

Rv Ropt+( ) Rh Rv⋅ Rh Rv+( ) Ropt⋅+ ⋅
    

   Together with the found  Ropt , the ratio of the output voltage to the input voltage can be calculated and with

that the just obtained power ratio η x( ) . A gratifying result is, that it exactly matches the formula given

above  with  Q1 Q2⋅   = 0   and   kprox  = 
Rv

Rh Rv+( ) Rv⋅
  ,  derived from a comparison of both equations

of the two-port Π-network with the corresponding equations of a transformer given in  Chapter 1.
For such a comparison it is useful to connect a negligible very small inductance  Lv  in series with  Rv .

     In  Chapter 14  is described a method for the determination of short-circuit impedances without
direct short-circuit measurements, but in place of that with measurements at practically used load
resistors. The short-circuit impedance is then the result of an also derived algebraic extrapolation.

     In  Chapter 15  is given a program suitable for instance for the  non-complex  BASIC-system.
A lot of the most important detailed calculations of this work are carried out with high precision.
It includes also the calculation of the Standard Corrective Sigma according to the pages 43 and 50. 
Sigma is a Pythagorean Mean and means also an overall measure of all measurement deviations. 

And by means of a comparison of the 8 individual relative correctives with one another,
any possible incorrect reading of a measurement value can be discovered.
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22                     Chapter 1.1             The Proportionality Equation 

                                      Chapter 1 

The Coherent Determination of the Mutual Inductive
and the Mutual Proximity-Effect Coupling Coefficient

1.1  All calculations are based on the two complex equations of the two-port
       network theory including the real part Rm of the complex coefficients B = C :

                               U1  =  R1 i ω⋅ L1⋅+( ) I1⋅ Rm i ω⋅ M⋅+( ) I2⋅+    =  A I1⋅ B I2⋅+    

                               U2  =  Rm i ω⋅ M⋅+( ) I1⋅ R2 i ω⋅ L2⋅+( ) I2⋅+    =  C I1⋅ D I2⋅+    

On the right hand side are given the general equations of the two-port network theory, called also
the four-terminal network theory, in German "Vierpoltheorie", that is applied here to electromagnetic
transformers: All four coefficients   A ,  B ,  C  and  D   can be generally complex. 

The direction of the two currents  I1 [A]  and  I2 [A]   is positive by definition, if they flow towards the

transformer. This means: If both currents are increasing, they induce a positive voltage  U1 [V] 

of the primary coil and a positive voltage  U2 [V]  of the secondary coil.   ω  = 2 π⋅ f⋅     is the angular 

frequency, during  f  [Hz]  is the frequency and  T  [sec]   is the period time according to   f T⋅   = 1 . 

All voltages and currents are assumed to be sine-shaped,  but more or less phase-shifted. 
The complex coefficients  B  and  C   of the two-port equations are equal to each other and identical

with the mutual impedance   Rm i ω⋅ M⋅+( ) .   Rm   is the real part and    i ω⋅ M⋅     is the imaginary part.

  R1  =  open-circuit resistance [Ω] ,        L1  =  open-circuit inductance [H]        of the primary coil

  R2  =  open-circuit resistance [Ω] ,        L2  =  open-circuit inductance [H]        of the secondary coil

  Rm  =  mutual resistance [Ω] ,                M  =  mutual inductance [H]                of mutual interaction 

During the measurement of the open-circuit impedance    Z1  =  R1 i ω⋅ L1⋅+  ,   the secondary coil is 

unloaded and the current   I2  = 0 .  Therefore the coefficient    A  =  Z1 .

During the measurement of the open-circuit impedance    Z2  =  R2 i ω⋅ L2⋅+  ,   the primary coil is 

unloaded and the current   I1  = 0 .  Therefore the coefficient    D  =  Z2  .

For the determination of the coefficients   B   and   C   are needed additionally the measurements of

the short-circuit impedances   Z1sc   and   Z2sc  .  For the short-circuited secondary coil is   U2  = 0 ,

and it follows from the second two-port equation:

           I2  =  
C−

D
I1⋅    ,                   and insertion into the first two-port equation yields:

          
B C⋅
D

  =  A Z1sc−                 B C⋅   =  D A Z1sc−( )⋅   =  D A⋅ 1
Z1sc

A
−









⋅   =  A D⋅ 1
Z1sc

Z1
−









⋅      

Analogously is valid also:     

          
C B⋅
A

  =  D Z2sc−                 C B⋅   =  A D Z2sc−( )⋅   =  A D⋅ 1
Z2sc

D
−









⋅   =  A D⋅ 1
Z2sc

Z2
−









⋅      

Because of the equality of   B C⋅   = C B⋅  ,  it follows exactly the proportionality equation: 

                                                                  
Z1sc

Z1
  =  

Z2sc

Z2
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26                     Chapter 1.4             Coherent Determination of  kind  and  kprox  

1.4  The Coherent determination of both the mutual inductive coupling
       coefficient kind  and the mutual Proximity-Effect coupling coefficient kprox  : 

As a conclusion from the first two pages of this Chapter 1, it can be written: 

            B  =  ± Z1 Z2⋅ 1
Z1sc

Z1
−









⋅            respectively         C  =  ± Z1 Z2⋅ 1
Z2sc

Z2
−









⋅    

And again arises the question concerning the sign of the square root. But now it will be solved by
means of polar coordinates. In order to decompose B , the square root has to be squared at first:  

                              B
2
  =  R2 i ω⋅ L2⋅+( ) R1 i ω⋅ L1⋅+( ) R1sc i ω⋅ L1sc⋅+( )− ⋅    

                              B
2
  =  R2 i ω⋅ L2⋅+( ) R1 R1sc−( ) i ω⋅ L1 L1sc−( )⋅+ ⋅     

     B
2
  =  R2 R1 R1sc−( )⋅ ω L2⋅ ω⋅ L1 L1sc−( )⋅−  i ω L2⋅ R1 R1sc−( )⋅ R2 ω⋅ L1 L1sc−( )⋅+ ⋅+    

      a  =  R2 R1 R1sc−( )⋅ ω L2⋅ ω⋅ L1 L1sc−( )⋅−               b  =  ω L2⋅ R1 R1sc−( )⋅ R2 ω⋅ L1 L1sc−( )⋅+   

 B
2

  =  a
2

b
2

+             β  = atan
b

a







a 0<( ) b 0>( )⋅ π⋅+ a 0<( ) b 0<( )⋅ π⋅+ a 0>( ) b 0<( )⋅ 2⋅ π⋅+  

If for instance  a  would be positive, but  b  negative, then the complex vector  B
2
  is situated in the

fourth quadrant, and 2 π⋅   is added to the arcus tangens  atan. 

The square root of a power function is extracted by dividing its exponent by 2 .

 B
2
  = B

2
e
i β⋅

⋅              φ  =  
β
2

               B  = Br i Bi⋅+   =  B
2

e
i φ⋅

⋅   =  B
2

cos φ( ) i sin φ( )⋅+( )⋅  

     Br  =  B
2

cos φ( )⋅   =  
4

a
2

b
2

+ cos φ( )⋅                       Bi  =  B
2

sin φ( )⋅   =  
4

a
2

b
2

+ sin φ( )⋅   

Since the calculation of  B  is based on measurements of the impedance of the primary coil at 

short-circuited secondary coil, the subscript  1  may be used for a more precise identification of
the derived  Rm  and  M ,  and furthermore also for  kprox   and  kind   as well:

      B  = Rm1 i ω⋅ M1⋅+                        Rm1  =  Re B( )  = Br                       ω M1⋅   =  Im B( )  = Bi     

                             Rm1  =  
4

a
2

b
2

+ cos φ( )⋅                               M1  =  
1

ω

4

a
2

b
2

+⋅ sin φ( )⋅    

                             kprox1  =  
Rm1

R1 R2⋅
                                        kind1  =  

M1

L1 L2⋅
    

The sign of the values of  Rm1  and  M1  depends only upon the angle φ  of the trigonometric 

functions  cos φ( )  and  sin φ( )  respectively. The fourth power root is related to the square  a
2

b
2

+( ) 
of the magnitude of the vector B . 

The same kind of calculation can be carried out with respect to measurements of the impedance 
of the secondary coil at short-circuited primary coil. Only the subscripts  1  and  2  have to be inter-

changed, and  B , φ , a  and  b  have to be replaced by other letters, for instance  C , ψ , g  and  h .
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                              C
2
  =  R1 i ω⋅ L1⋅+( ) R2 i ω⋅ L2⋅+( ) R2sc i ω⋅ L2sc⋅+( )− ⋅  

                              C
2
  =  R1 i ω⋅ L1⋅+( ) R2 R2sc−( ) i ω⋅ L2 L2sc−( )⋅+ ⋅      

    C
2
  =  R1 R2 R2sc−( )⋅ ω L1⋅ ω⋅ L2 L2sc−( )⋅−  i ω L1.⋅ R2 R2sc−( )⋅ R1 ω⋅ L2 L2sc−( )⋅+ ⋅+      

     g  =  R1 R2 R2sc−( )⋅ ω L1⋅ ω⋅ L2 L2sc−( )⋅−               h  =  ω L1⋅ R2 R2sc−( )⋅ R1 ω⋅ L2 L2sc−( )⋅+    

 C
2

  =  g
2

h
2

+             γ  = atan
h

g







g 0<( ) h 0>( )⋅ π⋅+ g 0<( ) h 0<( )⋅ π⋅+ g 0>( ) h 0<( )⋅ 2⋅ π⋅+   

If for instance  g  would be positive, but  h  negative, then the complex vector  C
2
  is situated in the

fourth quadrant, and  2 π⋅   is added to the arcus tangens  atan. 

The square root of a power function is extracted by dividing its exponent by 2 .

 C
2
  =  C

2
e
i γ⋅

⋅             ψ  =  
γ
2

               C  = Cr i Ci⋅+   =  C
2

e
i ψ⋅

⋅   =  C
2

cos ψ( ) i sin ψ( )⋅+( )⋅     

     Cr  =  C
2

cos ψ( )⋅   =  
4

g
2

h
2

+ cos ψ( )⋅                     Ci  =  C
2

sin ψ( )⋅   =  
4

g
2

h
2

+ sin ψ( )⋅   

Since the calculation of  C  is based on measurements of the impedance of the secondary coil

at short-circuited primary coil, the subscript  2  may be used for a more precise identification 
of the derived  Rm   and  M , and furthermore also for  kprox   and  kind   as well:

      C  = Rm2 i ω⋅ M2⋅+                        Rm2  =  Re C( )  = Cr                       ω M2⋅   =  Im C( )  = Ci      

                             Rm2  =  
4

g
2

h
2

+ cos ψ( )⋅                               M2  =  
1

ω

4

g
2

h
2

+⋅ sin ψ( )⋅     

                             kprox2  =  
Rm2

R1 R2⋅
                                        kind2  =  

M2

L1 L2⋅
     

The sign of the values of  Rm2  and  M2  depends only upon the angle ψ  of the trigonometric functions

cos ψ( )  and  sin ψ( )  respectively.  The fourth power root is related to the square  g
2

h
2

+( )  of the

magnitude of the vector  C . Theoretically the corresponding results of the two calculations should be

equal to each other, because of  C  = B . But accidental measurement errors as small deviations from

the true values of the short-circuit- and the open-circuit impedance values are always unavoidable.

     In other Chapters of this work are described also other methods without the means of polar coordi-
nates. Such methods can be used, if the correct sign of the values of the mutual resistance  Rm  and 

the mutual inductance  M   are clear already  a priori , as it is the normal case in the application of

electromagnetic transformers, enough below of their own resonance frequencies. But if other two-port 
networks are considered, then polar coordinates have to be applied in such a way as just shown here. 

     Finally a physical hint could be given still that really  Rm , and not  M  alone,  is an existing

parameter of the mutual property of an electromagnetic transformer:
If namely for the impedance measurements an external inductor and / or an external resistor would
be connected in series with the primary- or the secondary coil - or two inductors and / or two resistors,
each of both in series with one of both transformer coils - in every case the mutual impedance would
stay absolutely uneffected. But, of course, the overall coupling coefficient is decreased then. 



Application of the Formulae derived in Chapter 1.4  to the measured 
Values of an Experimentation Transformer of the previous Chapter 3, 
Calculation with Polar Coordinates:

First Path: The primary coil is measured.

a R2 R1 R1sc−( )⋅ ω L2⋅ ω⋅ L1 L1sc−( )⋅−:= b ω L2⋅ R1 R1sc−( )⋅ R2 ω⋅ L1 L1sc−( )⋅+:=

a 4.097732− 10
6

× Ω Ω⋅= b 1.677158 10
4

× Ω Ω⋅=

β atan
b

a







a 0<( ) b 0>( )⋅ π⋅+ a 0<( ) b 0<( )⋅ π⋅+ a 0>( ) b 0<( )⋅ 2⋅ π⋅+:=

β 3.137500 rad= β 179.765496 Grad=

φ
β
2

:= Br

4

a
2

b
2

+ cos φ( )⋅:= Bi

4

a
2

b
2

+ sin φ( )⋅:=

Rm1 Br:= Rm1 4.142584Ω= M1

Bi

ω
:= M1 5.369595 mH=

kprox1

Rm1

R1 R2⋅
:= kprox1 0.390567= kind1

M1

L1 L2⋅
:= kind1 0.939076=

============== =============
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  Chapter 3  

Measurement Values of an Experimentation Transformer

The following complex measurement values are small signal values and are measured at one self-
wound and not necessarily small transformer, provided with the Siemens ferrite core of the material
N 41  and the size  EE 21-9-5  with internal air gap of  120 µm,  AL = 200 nH per turn square. 
The coilformer is provided with two equal sections, the one is for the primary coil, the other for the
secondary coil. Between both coils is a partition wall of measured  0.91 mm. The width of each 
section is  4.27 mm. The winding bottom has a measured square of  7.48 mm x 7.48 mm.
The primary coil consists of  400 turns  of  0.16 EJF2  double enamelled copper wire and the 
the secondary coil consists of  70 turns  of  0.40 EJF2  double enamelled copper wire. 
Concerning the published AL-value the inductances should be at least approximately:

N1 400:=  L1  =  200 nH⋅ 400
2

⋅   =  32 mH⋅     N2 70:=  L2  =  200 nH⋅ 70
2

⋅   =  980 µH⋅      

The actual values can be obtained only be means of measurements with an impedance analyser:
The technical term "open-circuit" means that during the measurement of the one of both coils, the
at this moment other coil is not connected to any load. Therefore in this case no additional subscript
is used. But the technical term "short-circuit" [subscript  sc]  means that during the measurement
of the one of both coils, the at this moment other coil is short-circuited.

Used measurement frequency:   f 60 kHz⋅:= ω 2 π⋅ f⋅:= ω 3.769911 10
5

× s
-1

=

Measured no-load and short-circuited
resistances and inductances of the primary coil: 

Measured no-load and short-circuited 
resistances and inductances of the secondary coil:  

R1 45 Ω⋅:= R1sc 72 Ω⋅:= R2 2.5 Ω⋅:= R2sc 2.34 Ω⋅:=

L1 32.5 mH⋅:= L1sc 3.84 mH⋅:= L2 1006 µH⋅:= L2sc 118 µH⋅:=

The index  "sc"  stands for short-circuited.



7.1 Determination of  Mu  and  Rmu  from unequalized measurement values: 

The following formulae are derived from the four-terminal equations of  Chapter 1  with respect to the 
open-circuit and short-circuit measurements and the application of the solution of the mixed quadratic

equation    x
2

p x⋅+ q+   = 0  .  The sequence of the individual formulae given here is developed for the

straightforward calculation process. If instead of short-circuit measurements the output of a transformer

is loaded with certain external resistances   Rex1   and   Rex2   respectively, please see  Chapter 14. 

Q1

ω L1⋅

R1
:= Q1 272.271363= Q2

ω L2⋅

R2
:= Q2 151.701226=

S1 R1
2

ω
2

L1
2

⋅+:= H1 Q1
1

Q1
+:= S2 R2

2
ω

2
L2

2
⋅+:= H2 Q2

1

Q2
+:=

First path: Second path:

ξ1 R1 R1sc−( ) S2⋅:= ξ2 R2 R2sc−( ) S1⋅:=

η1 ω L1 L1sc−( )⋅ S2⋅:= η2 ω L2 L2sc−( )⋅ S1⋅:=

Λ1

η1

R2

ξ1

ω L2⋅
−:= Λ2

η2

R1

ξ2

ω L1⋅
−:=

Π1
1

R2
2

1

ω
2

L2
2

⋅
+ ξ1

2
η1

2
+⋅:= Π2

1

R1
2

1

ω
2

L1
2

⋅
+ ξ2

2
η2

2
+⋅:=

Γ1

Λ1 Π1+

2
:= Γ2

Λ2 Π2+

2
:=
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Second Path: The secondary coil is measured.

g R1 R2 R2sc−( )⋅ ω L1⋅ ω⋅ L2 L2sc−( )⋅−:= h ω L1⋅ R2 R2sc−( )⋅ R1 ω⋅ L2 L2sc−( )⋅+:=

g 4.101642− 10
6

× Ω Ω⋅= h 1.702492 10
4

× Ω Ω⋅=

γ atan
h

g







g 0<( ) h 0>( )⋅ π⋅+ g 0<( ) h 0<( )⋅ π⋅+ g 0>( ) h 0<( )⋅ 2⋅ π⋅+:=

γ 3.137442 rad= γ 179.762181 Grad=

ψ
γ
2

:= Cr

4

g
2

h
2

+ cos ψ( )⋅:= Ci

4

g
2

h
2

+ sin ψ( )⋅:=

Rm2 Cr:= Rm2 4.203153Ω= M2

Ci

ω
:= M2 5.372157 mH=

kprox2

Rm2

R1 R2⋅
:= kprox2 0.396277= kind2

M2

L1 L2⋅
:= kind2 0.939524=

============== =============

                                 Chapter 7 

The Two-Path Formulae for Parallel Coherent Calculation
of both the Mutual Inductance and the Mutual Resistance



kind
M

L1 L2⋅
:= kind 0.939300=

 ( kproxe  =  0.394076 )   (kinde  = 0.939301 ) 

In order to demonstrate the result of my calculations, the following three formulae
are copied from Chapter 10.4 , page 74 , of my book from 2014, but here calculated
from unequalized measurement values, it means without the CREET.

The optimum terminating capacitance is: 

Copt

1 kind kprox⋅
Q1

Q2
⋅−

kind

Q1

Q2
⋅ kprox−









2

1 kprox
2

−( ) 1
1

Q2
2

+







⋅+

1

ω
2

L2⋅
⋅:= Copt 2.216370 nF=

===============

 (Copte  =  2.208199nF )

For a comparison, the results written in brackets and additionally market with the subscript "e" originate
from my book mentioned on the title page of this 12 pages. The subscript "e" stands for equalized.

The optimum terminating resistance is: 

Ropt

kind

Q1

Q2
⋅ kprox−









2

1 kprox
2

−( ) 1
1

Q2
2

+







⋅+

1 kind
2

Q1⋅ Q2⋅+( ) 1 kprox
2

−( )⋅
Q2⋅ ω⋅ L2⋅:= Ropt 0.522340 kΩ=

================

 (Ropte  =  0.521067 kΩ⋅  )

The maximum possible power transfer efficiency is: 

ηmax

kind
2

Q1⋅ Q2⋅ kprox
2

+

1 kind
2

Q1⋅ Q2⋅+ 1 kprox
2

−+





2
:= ηmax 0.990414=

==============

  (ηmaxe  = 0.990418 )
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M1
1

ω

Γ1

H2
⋅:= Rm1

ξ1

R2

η1

ω L2⋅
+

2 H2⋅ ω⋅ M1⋅
:= M2

1

ω

Γ2

H1
⋅:= Rm2

ξ2

R1

η2

ω L1⋅
+

2 H1⋅ ω⋅ M2⋅
:=

M1 5.369595mH= Rm1 4.142584Ω= M2 5.372157 mH= Rm2 4.203153 Ω=

As a first proof, the values of both pairs of the results are rather equal to each other:

2
M1 M2−

M1 M2+








⋅ 4.769752− 10
4−

×= 2
Rm1 Rm2−

Rm1 Rm2+








⋅ 0.014515−=

However, the relative difference between both  Rm -results is here about 30 times larger than the relative

difference of the M -results. The cause is surely that the resistances of the measured short-circuit and

open-circuit impedances are much smaller than the reactances and therefore relatively less accurate. 
But if at the beginning the fine Complex Relative-Error Equalization Theory, the CREET of Chapter 2,
would have been applied, then the differences between Path One and Path Two would be zero. 
A detailed application of the CREET is given in my earlier report of 06 March 2022 about

"Maximization of the Efficiency of a Transformer, solely by Optimizing its Load Impedance"
But here in the following, the calculation is continued with the arithmetical mean values:

Rm

Rm1 Rm2+

2
:= Rm 4.172869Ω= M

M1 M2+

2
:= M 5.370876 mH=

 (Rme  = 4.179597 Ω⋅  )   (Me  = 5.370868 mH⋅  ) 

kprox

Rm

R1 R2⋅
:= kprox 0.393422=


